Database BASIC ALGEBRAIC STRUCTURES Rings Unital rings prdsmulrcl  
				
		 
		
			
		 
		Description:   A structure product of rings has closed binary operation.  (Contributed by Mario Carneiro , 11-Mar-2015)   (Proof shortened by AV , 30-Mar-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						prdsmulrcl.y ⊢  𝑌   =  ( 𝑆  X s 𝑅  )  
					
						prdsmulrcl.b ⊢  𝐵   =  ( Base ‘ 𝑌  )  
					
						prdsmulrcl.t ⊢   ·    =  ( .r  ‘ 𝑌  )  
					
						prdsmulrcl.s ⊢  ( 𝜑   →  𝑆   ∈  𝑉  )  
					
						prdsmulrcl.i ⊢  ( 𝜑   →  𝐼   ∈  𝑊  )  
					
						prdsmulrcl.r ⊢  ( 𝜑   →  𝑅  : 𝐼  ⟶ Ring )  
					
						prdsmulrcl.f ⊢  ( 𝜑   →  𝐹   ∈  𝐵  )  
					
						prdsmulrcl.g ⊢  ( 𝜑   →  𝐺   ∈  𝐵  )  
				
					Assertion 
					prdsmulrcl ⊢   ( 𝜑   →  ( 𝐹   ·   𝐺  )  ∈  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							prdsmulrcl.y ⊢  𝑌   =  ( 𝑆  X s 𝑅  )  
						
							2 
								
							 
							prdsmulrcl.b ⊢  𝐵   =  ( Base ‘ 𝑌  )  
						
							3 
								
							 
							prdsmulrcl.t ⊢   ·    =  ( .r  ‘ 𝑌  )  
						
							4 
								
							 
							prdsmulrcl.s ⊢  ( 𝜑   →  𝑆   ∈  𝑉  )  
						
							5 
								
							 
							prdsmulrcl.i ⊢  ( 𝜑   →  𝐼   ∈  𝑊  )  
						
							6 
								
							 
							prdsmulrcl.r ⊢  ( 𝜑   →  𝑅  : 𝐼  ⟶ Ring )  
						
							7 
								
							 
							prdsmulrcl.f ⊢  ( 𝜑   →  𝐹   ∈  𝐵  )  
						
							8 
								
							 
							prdsmulrcl.g ⊢  ( 𝜑   →  𝐺   ∈  𝐵  )  
						
							9 
								
							 
							ringssrng ⊢  Ring  ⊆  Rng  
						
							10 
								
							 
							fss ⊢  ( ( 𝑅  : 𝐼  ⟶ Ring  ∧  Ring  ⊆  Rng )  →  𝑅  : 𝐼  ⟶ Rng )  
						
							11 
								6  9  10 
							 
							sylancl ⊢  ( 𝜑   →  𝑅  : 𝐼  ⟶ Rng )  
						
							12 
								1  2  3  4  5  11  7  8 
							 
							prdsmulrngcl ⊢  ( 𝜑   →  ( 𝐹   ·   𝐺  )  ∈  𝐵  )