| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbasmpt.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt.r | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 6 |  | prdsplusgval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | prdsplusgval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 8 |  | prdsmulrval.t | ⊢  ·   =  ( .r ‘ 𝑌 ) | 
						
							| 9 |  | prdsmulrfval.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐼 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | prdsmulrval | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ·  𝐺 ) ‘ 𝐽 )  =  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐽 ) ) | 
						
							| 12 |  | 2fveq3 | ⊢ ( 𝑥  =  𝐽  →  ( .r ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐽 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝐽 ) ) | 
						
							| 15 | 12 13 14 | oveq123d | ⊢ ( 𝑥  =  𝐽  →  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 17 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) )  ∈  V | 
						
							| 18 | 15 16 17 | fvmpt | ⊢ ( 𝐽  ∈  𝐼  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐽 )  =  ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 19 | 9 18 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐽 )  =  ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 20 | 11 19 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹  ·  𝐺 ) ‘ 𝐽 )  =  ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |