| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdspjmhm.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdspjmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdspjmhm.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | prdspjmhm.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑋 ) | 
						
							| 5 |  | prdspjmhm.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 6 |  | prdspjmhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐼 ) | 
						
							| 7 | 1 3 4 5 | prdsmndd | ⊢ ( 𝜑  →  𝑌  ∈  Mnd ) | 
						
							| 8 | 5 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑅 ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑆  ∈  𝑋 ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐼  ∈  𝑉 ) | 
						
							| 11 | 5 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑅  Fn  𝐼 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐴  ∈  𝐼 ) | 
						
							| 15 | 1 2 9 10 12 13 14 | prdsbasprj | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ‘ 𝐴 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) ) | 
						
							| 16 | 15 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑆  ∈  𝑋 ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 19 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 20 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 21 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 23 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝐴  ∈  𝐼 ) | 
						
							| 24 | 1 2 17 18 19 20 21 22 23 | prdsplusgfval | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 )  =  ( ( 𝑦 ‘ 𝐴 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( 𝑧 ‘ 𝐴 ) ) ) | 
						
							| 25 | 2 22 | mndcl | ⊢ ( ( 𝑌  ∈  Mnd  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 26 | 25 | 3expb | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 27 | 7 26 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 )  ∈  𝐵 ) | 
						
							| 28 |  | fveq1 | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 )  →  ( 𝑥 ‘ 𝐴 )  =  ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ) | 
						
							| 29 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  =  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) | 
						
							| 30 |  | fvex | ⊢ ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 )  ∈  V | 
						
							| 31 | 28 29 30 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 )  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ) | 
						
							| 32 | 27 31 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝐴 ) ) | 
						
							| 33 |  | fveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 ‘ 𝐴 )  =  ( 𝑦 ‘ 𝐴 ) ) | 
						
							| 34 |  | fvex | ⊢ ( 𝑦 ‘ 𝐴 )  ∈  V | 
						
							| 35 | 33 29 34 | fvmpt | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 )  =  ( 𝑦 ‘ 𝐴 ) ) | 
						
							| 36 |  | fveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥 ‘ 𝐴 )  =  ( 𝑧 ‘ 𝐴 ) ) | 
						
							| 37 |  | fvex | ⊢ ( 𝑧 ‘ 𝐴 )  ∈  V | 
						
							| 38 | 36 29 37 | fvmpt | ⊢ ( 𝑧  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 )  =  ( 𝑧 ‘ 𝐴 ) ) | 
						
							| 39 | 35 38 | oveqan12d | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝐴 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( 𝑧 ‘ 𝐴 ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) )  =  ( ( 𝑦 ‘ 𝐴 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( 𝑧 ‘ 𝐴 ) ) ) | 
						
							| 41 | 24 32 40 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) ) | 
						
							| 42 | 41 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 44 | 2 43 | mndidcl | ⊢ ( 𝑌  ∈  Mnd  →  ( 0g ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 45 |  | fveq1 | ⊢ ( 𝑥  =  ( 0g ‘ 𝑌 )  →  ( 𝑥 ‘ 𝐴 )  =  ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 46 |  | fvex | ⊢ ( ( 0g ‘ 𝑌 ) ‘ 𝐴 )  ∈  V | 
						
							| 47 | 45 29 46 | fvmpt | ⊢ ( ( 0g ‘ 𝑌 )  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 48 | 7 44 47 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 49 | 1 3 4 5 | prds0g | ⊢ ( 𝜑  →  ( 0g  ∘  𝑅 )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 50 | 49 | fveq1d | ⊢ ( 𝜑  →  ( ( 0g  ∘  𝑅 ) ‘ 𝐴 )  =  ( ( 0g ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 51 |  | fvco3 | ⊢ ( ( 𝑅 : 𝐼 ⟶ Mnd  ∧  𝐴  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝐴 )  =  ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) | 
						
							| 52 | 5 6 51 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g  ∘  𝑅 ) ‘ 𝐴 )  =  ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) | 
						
							| 53 | 48 50 52 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) | 
						
							| 54 | 16 42 53 | 3jca | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ ( 𝑅 ‘ 𝐴 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) )  ∧  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝐴 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝐴 ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝐴 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) | 
						
							| 57 |  | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝐴 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) | 
						
							| 58 | 2 55 22 56 43 57 | ismhm | ⊢ ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  ∈  ( 𝑌  MndHom  ( 𝑅 ‘ 𝐴 ) )  ↔  ( ( 𝑌  ∈  Mnd  ∧  ( 𝑅 ‘ 𝐴 )  ∈  Mnd )  ∧  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ ( 𝑅 ‘ 𝐴 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝐴 ) ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑧 ) )  ∧  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝐴 ) ) ) ) ) | 
						
							| 59 | 7 8 54 58 | syl21anbrc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  ∈  ( 𝑌  MndHom  ( 𝑅 ‘ 𝐴 ) ) ) |