Metamath Proof Explorer


Theorem prdsplusg

Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
prdsbas.s ( 𝜑𝑆𝑉 )
prdsbas.r ( 𝜑𝑅𝑊 )
prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
prdsplusg.b + = ( +g𝑃 )
Assertion prdsplusg ( 𝜑+ = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 prdsbas.s ( 𝜑𝑆𝑉 )
3 prdsbas.r ( 𝜑𝑅𝑊 )
4 prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
5 prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
6 prdsplusg.b + = ( +g𝑃 )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 1 2 3 4 5 prdsbas ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )
9 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
10 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
11 eqidd ( 𝜑 → ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
12 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )
13 eqidd ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
14 eqidd ( 𝜑 → { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } )
15 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) )
16 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) = ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )
17 eqidd ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) )
18 1 7 5 8 9 10 11 12 13 14 15 16 17 2 3 prdsval ( 𝜑𝑃 = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) ) )
19 plusgid +g = Slot ( +g ‘ ndx )
20 ovssunirn ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ( +g ‘ ( 𝑅𝑥 ) )
21 19 strfvss ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ( 𝑅𝑥 )
22 fvssunirn ( 𝑅𝑥 ) ⊆ ran 𝑅
23 rnss ( ( 𝑅𝑥 ) ⊆ ran 𝑅 → ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 )
24 uniss ( ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 )
25 22 23 24 mp2b ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅
26 21 25 sstri ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅
27 rnss ( ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅 → ran ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅 )
28 uniss ( ran ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅 ran ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅 )
29 26 27 28 mp2b ran ( +g ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅
30 20 29 sstri ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ran ran 𝑅
31 ovex ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ V
32 31 elpw ( ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ran ran ran 𝑅 ↔ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ran ran 𝑅 )
33 30 32 mpbir ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ran ran ran 𝑅
34 33 a1i ( ( 𝜑𝑥𝐼 ) → ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ran ran ran 𝑅 )
35 34 fmpttd ( 𝜑 → ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) : 𝐼 ⟶ 𝒫 ran ran ran 𝑅 )
36 rnexg ( 𝑅𝑊 → ran 𝑅 ∈ V )
37 uniexg ( ran 𝑅 ∈ V → ran 𝑅 ∈ V )
38 3 36 37 3syl ( 𝜑 ran 𝑅 ∈ V )
39 rnexg ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V )
40 uniexg ( ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V )
41 38 39 40 3syl ( 𝜑 ran ran 𝑅 ∈ V )
42 rnexg ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V )
43 uniexg ( ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V )
44 pwexg ( ran ran ran 𝑅 ∈ V → 𝒫 ran ran ran 𝑅 ∈ V )
45 41 42 43 44 4syl ( 𝜑 → 𝒫 ran ran ran 𝑅 ∈ V )
46 3 dmexd ( 𝜑 → dom 𝑅 ∈ V )
47 5 46 eqeltrrd ( 𝜑𝐼 ∈ V )
48 45 47 elmapd ( 𝜑 → ( ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ ( 𝒫 ran ran ran 𝑅m 𝐼 ) ↔ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) : 𝐼 ⟶ 𝒫 ran ran ran 𝑅 ) )
49 35 48 mpbird ( 𝜑 → ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ ( 𝒫 ran ran ran 𝑅m 𝐼 ) )
50 49 ralrimivw ( 𝜑 → ∀ 𝑔𝐵 ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ ( 𝒫 ran ran ran 𝑅m 𝐼 ) )
51 50 ralrimivw ( 𝜑 → ∀ 𝑓𝐵𝑔𝐵 ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ ( 𝒫 ran ran ran 𝑅m 𝐼 ) )
52 eqid ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )
53 52 fmpo ( ∀ 𝑓𝐵𝑔𝐵 ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ ( 𝒫 ran ran ran 𝑅m 𝐼 ) ↔ ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 𝒫 ran ran ran 𝑅m 𝐼 ) )
54 51 53 sylib ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 𝒫 ran ran ran 𝑅m 𝐼 ) )
55 4 fvexi 𝐵 ∈ V
56 55 55 xpex ( 𝐵 × 𝐵 ) ∈ V
57 ovex ( 𝒫 ran ran ran 𝑅m 𝐼 ) ∈ V
58 fex2 ( ( ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 𝒫 ran ran ran 𝑅m 𝐼 ) ∧ ( 𝐵 × 𝐵 ) ∈ V ∧ ( 𝒫 ran ran ran 𝑅m 𝐼 ) ∈ V ) → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ∈ V )
59 56 57 58 mp3an23 ( ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 𝒫 ran ran ran 𝑅m 𝐼 ) → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ∈ V )
60 54 59 syl ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ∈ V )
61 snsstp2 { ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ }
62 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } )
63 61 62 sstri { ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } )
64 ssun1 ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
65 63 64 sstri { ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
66 18 6 19 60 65 prdsbaslem ( 𝜑+ = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )