| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsrngd.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsrngd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prdsrngd.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsrngd.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Rng ) | 
						
							| 5 |  | rngabl | ⊢ ( 𝑥  ∈  Rng  →  𝑥  ∈  Abel ) | 
						
							| 6 | 5 | ssriv | ⊢ Rng  ⊆  Abel | 
						
							| 7 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Rng  ∧  Rng  ⊆  Abel )  →  𝑅 : 𝐼 ⟶ Abel ) | 
						
							| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Abel ) | 
						
							| 9 | 1 2 3 8 | prdsabld | ⊢ ( 𝜑  →  𝑌  ∈  Abel ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) )  =  ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) | 
						
							| 11 |  | rngmgpf | ⊢ ( mulGrp  ↾  Rng ) : Rng ⟶ Smgrp | 
						
							| 12 |  | fco2 | ⊢ ( ( ( mulGrp  ↾  Rng ) : Rng ⟶ Smgrp  ∧  𝑅 : 𝐼 ⟶ Rng )  →  ( mulGrp  ∘  𝑅 ) : 𝐼 ⟶ Smgrp ) | 
						
							| 13 | 11 4 12 | sylancr | ⊢ ( 𝜑  →  ( mulGrp  ∘  𝑅 ) : 𝐼 ⟶ Smgrp ) | 
						
							| 14 | 10 2 3 13 | prdssgrpd | ⊢ ( 𝜑  →  ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) )  ∈  Smgrp ) | 
						
							| 15 |  | fvexd | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑌 )  ∈  V ) | 
						
							| 16 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) )  ∈  V ) | 
						
							| 17 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 19 | 4 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 20 | 1 18 10 2 3 19 | prdsmgp | ⊢ ( 𝜑  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) | 
						
							| 22 | 20 | simprd | ⊢ ( 𝜑  →  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) | 
						
							| 23 | 22 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  ∧  𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) 𝑦 ) ) | 
						
							| 24 | 15 16 17 21 23 | sgrppropd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝑌 )  ∈  Smgrp  ↔  ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) )  ∈  Smgrp ) ) | 
						
							| 25 | 14 24 | mpbird | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑌 )  ∈  Smgrp ) | 
						
							| 26 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ Rng ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑤 )  ∈  Rng ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 29 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  𝑉 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝑆  ∈  𝑉 ) | 
						
							| 31 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 33 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 35 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝑥  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝑤  ∈  𝐼 ) | 
						
							| 37 | 1 28 30 32 34 35 36 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( 𝑥 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) | 
						
							| 38 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝑦  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 40 | 1 28 30 32 34 39 36 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) | 
						
							| 41 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  𝑧  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 43 | 1 28 30 32 34 42 36 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( 𝑧 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑤 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 45 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑤 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 46 |  | eqid | ⊢ ( .r ‘ ( 𝑅 ‘ 𝑤 ) )  =  ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 47 | 44 45 46 | rngdi | ⊢ ( ( ( 𝑅 ‘ 𝑤 )  ∈  Rng  ∧  ( ( 𝑥 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) )  ∧  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) )  ∧  ( 𝑧 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) )  →  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 48 | 27 37 40 43 47 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 50 | 1 28 30 32 34 39 42 49 36 | prdsplusgfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 )  =  ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) )  =  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 52 |  | eqid | ⊢ ( .r ‘ 𝑌 )  =  ( .r ‘ 𝑌 ) | 
						
							| 53 | 1 28 30 32 34 35 39 52 36 | prdsmulrfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 )  =  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) | 
						
							| 54 | 1 28 30 32 34 35 42 52 36 | prdsmulrfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 )  =  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) | 
						
							| 55 | 53 54 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 56 | 48 51 55 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) )  =  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) | 
						
							| 57 | 56 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑤  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) )  =  ( 𝑤  ∈  𝐼  ↦  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) | 
						
							| 58 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 59 |  | rnggrp | ⊢ ( 𝑥  ∈  Rng  →  𝑥  ∈  Grp ) | 
						
							| 60 | 59 | grpmndd | ⊢ ( 𝑥  ∈  Rng  →  𝑥  ∈  Mnd ) | 
						
							| 61 | 60 | ssriv | ⊢ Rng  ⊆  Mnd | 
						
							| 62 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Rng  ∧  Rng  ⊆  Mnd )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 63 | 4 61 62 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 65 | 1 28 49 29 31 64 38 41 | prdsplusgcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 66 | 1 28 29 31 33 58 65 52 | prdsmulrval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( 𝑤  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) | 
						
							| 67 | 1 28 52 29 31 26 58 38 | prdsmulrngcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 68 | 1 28 52 29 31 26 58 41 | prdsmulrngcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 69 | 1 28 29 31 33 67 68 49 | prdsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) )  =  ( 𝑤  ∈  𝐼  ↦  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) | 
						
							| 70 | 57 66 69 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ) | 
						
							| 71 | 44 45 46 | rngdir | ⊢ ( ( ( 𝑅 ‘ 𝑤 )  ∈  Rng  ∧  ( ( 𝑥 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) )  ∧  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) )  ∧  ( 𝑧 ‘ 𝑤 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) )  →  ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 72 | 27 37 40 43 71 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 73 | 1 28 30 32 34 35 39 49 36 | prdsplusgfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 )  =  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) | 
						
							| 75 | 1 28 30 32 34 39 42 52 36 | prdsmulrfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 )  =  ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) | 
						
							| 76 | 54 75 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) )  =  ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 77 | 72 74 76 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑤  ∈  𝐼 )  →  ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) )  =  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) | 
						
							| 78 | 77 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑤  ∈  𝐼  ↦  ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) )  =  ( 𝑤  ∈  𝐼  ↦  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) | 
						
							| 79 | 1 28 49 29 31 64 58 38 | prdsplusgcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 80 | 1 28 29 31 33 79 41 52 | prdsmulrval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 )  =  ( 𝑤  ∈  𝐼  ↦  ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) | 
						
							| 81 | 1 28 52 29 31 26 38 41 | prdsmulrngcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 82 | 1 28 29 31 33 68 81 49 | prdsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) )  =  ( 𝑤  ∈  𝐼  ↦  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) | 
						
							| 83 | 78 80 82 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) | 
						
							| 84 | 70 83 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 )  ∧  𝑧  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) | 
						
							| 85 | 84 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝑌 ) ∀ 𝑦  ∈  ( Base ‘ 𝑌 ) ∀ 𝑧  ∈  ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) | 
						
							| 86 | 28 18 49 52 | isrng | ⊢ ( 𝑌  ∈  Rng  ↔  ( 𝑌  ∈  Abel  ∧  ( mulGrp ‘ 𝑌 )  ∈  Smgrp  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑌 ) ∀ 𝑦  ∈  ( Base ‘ 𝑌 ) ∀ 𝑧  ∈  ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) ) | 
						
							| 87 | 9 25 85 86 | syl3anbrc | ⊢ ( 𝜑  →  𝑌  ∈  Rng ) |