Step |
Hyp |
Ref |
Expression |
1 |
|
prdsrngd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsrngd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
3 |
|
prdsrngd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prdsrngd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Rng ) |
5 |
|
rngabl |
⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Abel ) |
6 |
5
|
ssriv |
⊢ Rng ⊆ Abel |
7 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ Rng ∧ Rng ⊆ Abel ) → 𝑅 : 𝐼 ⟶ Abel ) |
8 |
4 6 7
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Abel ) |
9 |
1 2 3 8
|
prdsabld |
⊢ ( 𝜑 → 𝑌 ∈ Abel ) |
10 |
|
eqid |
⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) |
11 |
|
rngmgpf |
⊢ ( mulGrp ↾ Rng ) : Rng ⟶ Smgrp |
12 |
|
fco2 |
⊢ ( ( ( mulGrp ↾ Rng ) : Rng ⟶ Smgrp ∧ 𝑅 : 𝐼 ⟶ Rng ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Smgrp ) |
13 |
11 4 12
|
sylancr |
⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Smgrp ) |
14 |
10 2 3 13
|
prdssgrpd |
⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Smgrp ) |
15 |
|
fvexd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ V ) |
16 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ V ) |
17 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
19 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
20 |
1 18 10 2 3 19
|
prdsmgp |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
22 |
20
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
23 |
22
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
24 |
15 16 17 21 23
|
sgrppropd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) ∈ Smgrp ↔ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Smgrp ) ) |
25 |
14 24
|
mpbird |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ Smgrp ) |
26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Rng ) |
27 |
26
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑤 ) ∈ Rng ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ 𝑉 ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
31 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ 𝑊 ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
33 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
35 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑤 ∈ 𝐼 ) |
37 |
1 28 30 32 34 35 36
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
38 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) |
40 |
1 28 30 32 34 39 36
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
41 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) |
43 |
1 28 30 32 34 42 36
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
44 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) |
45 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) |
46 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) |
47 |
44 45 46
|
rngdi |
⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Rng ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
48 |
27 37 40 43 47
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
49 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
50 |
1 28 30 32 34 39 42 49 36
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
51 |
50
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
52 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
53 |
1 28 30 32 34 35 39 52 36
|
prdsmulrfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
54 |
1 28 30 32 34 35 42 52 36
|
prdsmulrfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
55 |
53 54
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
56 |
48 51 55
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
57 |
56
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
58 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) |
59 |
|
rnggrp |
⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Grp ) |
60 |
59
|
grpmndd |
⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Mnd ) |
61 |
60
|
ssriv |
⊢ Rng ⊆ Mnd |
62 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ Rng ∧ Rng ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) |
63 |
4 61 62
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Mnd ) |
65 |
1 28 49 29 31 64 38 41
|
prdsplusgcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
66 |
1 28 29 31 33 58 65 52
|
prdsmulrval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
67 |
1 28 52 29 31 26 58 38
|
prdsmulrngcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
68 |
1 28 52 29 31 26 58 41
|
prdsmulrngcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
69 |
1 28 29 31 33 67 68 49
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
70 |
57 66 69
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
71 |
44 45 46
|
rngdir |
⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Rng ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
72 |
27 37 40 43 71
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
73 |
1 28 30 32 34 35 39 49 36
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
74 |
73
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
75 |
1 28 30 32 34 39 42 52 36
|
prdsmulrfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
76 |
54 75
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
77 |
72 74 76
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
78 |
77
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
79 |
1 28 49 29 31 64 58 38
|
prdsplusgcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
80 |
1 28 29 31 33 79 41 52
|
prdsmulrval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
81 |
1 28 52 29 31 26 38 41
|
prdsmulrngcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
82 |
1 28 29 31 33 68 81 49
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
83 |
78 80 82
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
84 |
70 83
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
85 |
84
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
86 |
28 18 49 52
|
isrng |
⊢ ( 𝑌 ∈ Rng ↔ ( 𝑌 ∈ Abel ∧ ( mulGrp ‘ 𝑌 ) ∈ Smgrp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) ) |
87 |
9 25 85 86
|
syl3anbrc |
⊢ ( 𝜑 → 𝑌 ∈ Rng ) |