| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbas.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbas.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdsbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  dom  𝑅  =  dom  𝑅 ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  =  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) )  =  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) )  =  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) )  =  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝜑  →  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  dom  𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  dom  𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  sup ( ( ran  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  =  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  sup ( ( ran  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ×  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ,  𝑐  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) )  =  ( 𝑎  ∈  ( X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ×  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ,  𝑐  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 16 | 1 4 5 6 7 8 9 10 11 12 13 14 15 2 3 | prdsval | ⊢ ( 𝜑  →  𝑃  =  ( ( { 〈 ( Base ‘ ndx ) ,  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  dom  𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  sup ( ( ran  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ×  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ,  𝑐  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 18 |  | scaid | ⊢ Scalar  =  Slot  ( Scalar ‘ ndx ) | 
						
							| 19 |  | snsstp1 | ⊢ { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 }  ⊆  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } | 
						
							| 20 |  | ssun2 | ⊢ { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 }  ⊆  ( { 〈 ( Base ‘ ndx ) ,  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) | 
						
							| 21 | 19 20 | sstri | ⊢ { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 }  ⊆  ( { 〈 ( Base ‘ ndx ) ,  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) | 
						
							| 22 |  | ssun1 | ⊢ ( { 〈 ( Base ‘ ndx ) ,  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  dom  𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  sup ( ( ran  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ×  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ,  𝑐  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | 
						
							| 23 | 21 22 | sstri | ⊢ { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 }  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑆  Σg  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  dom  𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  sup ( ( ran  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ×  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ,  𝑐  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ,  𝑔  ∈  X 𝑥  ∈  dom  𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↦  X 𝑥  ∈  dom  𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  dom  𝑅  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | 
						
							| 24 | 16 17 18 2 23 | prdsbaslem | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑃 )  =  𝑆 ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( 𝜑  →  𝑆  =  ( Scalar ‘ 𝑃 ) ) |