| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdssgrpd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdssgrpd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 3 |
|
prdssgrpd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
prdssgrpd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Smgrp ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 9 |
3
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ V ) |
| 11 |
2
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Smgrp ) |
| 14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 15 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 16 |
1 7 8 10 12 13 14 15
|
prdsplusgsgrpcl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 17 |
16
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 18 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Smgrp ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Smgrp ) |
| 20 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ V ) |
| 21 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 22 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 24 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
| 26 |
1 7 20 21 23 24 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 27 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 28 |
1 7 20 21 23 27 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 29 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 30 |
1 7 20 21 23 29 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 32 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 33 |
31 32
|
sgrpass |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Smgrp ∧ ( ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 34 |
19 26 28 30 33
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 35 |
1 7 20 21 23 24 27 8 25
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 37 |
1 7 20 21 23 27 29 8 25
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 38 |
37
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 39 |
34 36 38
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 40 |
39
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 41 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ V ) |
| 42 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 43 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 44 |
16
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 45 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 46 |
1 7 41 42 43 44 45 8
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 47 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Smgrp ) |
| 49 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 50 |
1 7 8 41 42 48 49 45
|
prdsplusgsgrpcl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 51 |
1 7 41 42 43 47 50 8
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 52 |
40 46 51
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) ) |
| 53 |
1
|
ovexi |
⊢ 𝑌 ∈ V |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 55 |
5 6 17 52 54
|
issgrpd |
⊢ ( 𝜑 → 𝑌 ∈ Smgrp ) |