Metamath Proof Explorer


Theorem prdstopn

Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdstopn.s ( 𝜑𝑆𝑉 )
prdstopn.i ( 𝜑𝐼𝑊 )
prdstopn.r ( 𝜑𝑅 Fn 𝐼 )
prdstopn.o 𝑂 = ( TopOpen ‘ 𝑌 )
Assertion prdstopn ( 𝜑𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 prdstopn.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdstopn.s ( 𝜑𝑆𝑉 )
3 prdstopn.i ( 𝜑𝐼𝑊 )
4 prdstopn.r ( 𝜑𝑅 Fn 𝐼 )
5 prdstopn.o 𝑂 = ( TopOpen ‘ 𝑌 )
6 fnex ( ( 𝑅 Fn 𝐼𝐼𝑊 ) → 𝑅 ∈ V )
7 4 3 6 syl2anc ( 𝜑𝑅 ∈ V )
8 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
9 eqidd ( 𝜑 → dom 𝑅 = dom 𝑅 )
10 eqid ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 )
11 1 2 7 8 9 10 prdstset ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
12 topnfn TopOpen Fn V
13 dffn2 ( 𝑅 Fn 𝐼𝑅 : 𝐼 ⟶ V )
14 4 13 sylib ( 𝜑𝑅 : 𝐼 ⟶ V )
15 fnfco ( ( TopOpen Fn V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) Fn 𝐼 )
16 12 14 15 sylancr ( 𝜑 → ( TopOpen ∘ 𝑅 ) Fn 𝐼 )
17 eqid { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) }
18 17 ptval ( ( 𝐼𝑊 ∧ ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ) )
19 3 16 18 syl2anc ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ) )
20 19 unieqd ( 𝜑 ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ) )
21 fvco2 ( ( 𝑅 Fn 𝐼𝑦𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅𝑦 ) ) )
22 4 21 sylan ( ( 𝜑𝑦𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅𝑦 ) ) )
23 eqid ( Base ‘ ( 𝑅𝑦 ) ) = ( Base ‘ ( 𝑅𝑦 ) )
24 eqid ( TopSet ‘ ( 𝑅𝑦 ) ) = ( TopSet ‘ ( 𝑅𝑦 ) )
25 23 24 topnval ( ( TopSet ‘ ( 𝑅𝑦 ) ) ↾t ( Base ‘ ( 𝑅𝑦 ) ) ) = ( TopOpen ‘ ( 𝑅𝑦 ) )
26 restsspw ( ( TopSet ‘ ( 𝑅𝑦 ) ) ↾t ( Base ‘ ( 𝑅𝑦 ) ) ) ⊆ 𝒫 ( Base ‘ ( 𝑅𝑦 ) )
27 25 26 eqsstrri ( TopOpen ‘ ( 𝑅𝑦 ) ) ⊆ 𝒫 ( Base ‘ ( 𝑅𝑦 ) )
28 22 27 eqsstrdi ( ( 𝜑𝑦𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ⊆ 𝒫 ( Base ‘ ( 𝑅𝑦 ) ) )
29 28 sseld ( ( 𝜑𝑦𝐼 ) → ( ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ( 𝑔𝑦 ) ∈ 𝒫 ( Base ‘ ( 𝑅𝑦 ) ) ) )
30 fvex ( 𝑔𝑦 ) ∈ V
31 30 elpw ( ( 𝑔𝑦 ) ∈ 𝒫 ( Base ‘ ( 𝑅𝑦 ) ) ↔ ( 𝑔𝑦 ) ⊆ ( Base ‘ ( 𝑅𝑦 ) ) )
32 29 31 syl6ib ( ( 𝜑𝑦𝐼 ) → ( ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ( 𝑔𝑦 ) ⊆ ( Base ‘ ( 𝑅𝑦 ) ) ) )
33 32 ralimdva ( 𝜑 → ( ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ∀ 𝑦𝐼 ( 𝑔𝑦 ) ⊆ ( Base ‘ ( 𝑅𝑦 ) ) ) )
34 simpl2 ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) → ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) )
35 33 34 impel ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) ) → ∀ 𝑦𝐼 ( 𝑔𝑦 ) ⊆ ( Base ‘ ( 𝑅𝑦 ) ) )
36 ss2ixp ( ∀ 𝑦𝐼 ( 𝑔𝑦 ) ⊆ ( Base ‘ ( 𝑅𝑦 ) ) → X 𝑦𝐼 ( 𝑔𝑦 ) ⊆ X 𝑦𝐼 ( Base ‘ ( 𝑅𝑦 ) ) )
37 35 36 syl ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) ) → X 𝑦𝐼 ( 𝑔𝑦 ) ⊆ X 𝑦𝐼 ( Base ‘ ( 𝑅𝑦 ) ) )
38 simprr ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) ) → 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) )
39 1 8 2 3 4 prdsbas2 ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑦𝐼 ( Base ‘ ( 𝑅𝑦 ) ) )
40 39 adantr ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) ) → ( Base ‘ 𝑌 ) = X 𝑦𝐼 ( Base ‘ ( 𝑅𝑦 ) ) )
41 37 38 40 3sstr4d ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) )
42 41 ex ( 𝜑 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) )
43 42 exlimdv ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) )
44 velpw ( 𝑥 ∈ 𝒫 ( Base ‘ 𝑌 ) ↔ 𝑥 ⊆ ( Base ‘ 𝑌 ) )
45 43 44 syl6ibr ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝑌 ) ) )
46 45 abssdv ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) )
47 fvex ( Base ‘ 𝑌 ) ∈ V
48 47 pwex 𝒫 ( Base ‘ 𝑌 ) ∈ V
49 48 ssex ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ∈ V )
50 unitg ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ∈ V → ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ) = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } )
51 46 49 50 3syl ( 𝜑 ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ) = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } )
52 20 51 eqtrd ( 𝜑 ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } )
53 sspwuni ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) ↔ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ⊆ ( Base ‘ 𝑌 ) )
54 46 53 sylib ( 𝜑 { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦𝐼 ( 𝑔𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼𝑧 ) ( 𝑔𝑦 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦𝐼 ( 𝑔𝑦 ) ) } ⊆ ( Base ‘ 𝑌 ) )
55 52 54 eqsstrd ( 𝜑 ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ ( Base ‘ 𝑌 ) )
56 sspwuni ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ↔ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ ( Base ‘ 𝑌 ) )
57 55 56 sylibr ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ 𝑌 ) )
58 11 57 eqsstrd ( 𝜑 → ( TopSet ‘ 𝑌 ) ⊆ 𝒫 ( Base ‘ 𝑌 ) )
59 8 10 topnid ( ( TopSet ‘ 𝑌 ) ⊆ 𝒫 ( Base ‘ 𝑌 ) → ( TopSet ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) )
60 58 59 syl ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) )
61 60 5 eqtr4di ( 𝜑 → ( TopSet ‘ 𝑌 ) = 𝑂 )
62 61 11 eqtr3d ( 𝜑𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )