| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdstopn.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdstopn.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdstopn.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 4 |  | prdstopn.r | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 5 |  | prdstopn.o | ⊢ 𝑂  =  ( TopOpen ‘ 𝑌 ) | 
						
							| 6 |  | fnex | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑊 )  →  𝑅  ∈  V ) | 
						
							| 7 | 4 3 6 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝜑  →  dom  𝑅  =  dom  𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( TopSet ‘ 𝑌 )  =  ( TopSet ‘ 𝑌 ) | 
						
							| 11 | 1 2 7 8 9 10 | prdstset | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) | 
						
							| 12 |  | topnfn | ⊢ TopOpen  Fn  V | 
						
							| 13 |  | dffn2 | ⊢ ( 𝑅  Fn  𝐼  ↔  𝑅 : 𝐼 ⟶ V ) | 
						
							| 14 | 4 13 | sylib | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ V ) | 
						
							| 15 |  | fnfco | ⊢ ( ( TopOpen  Fn  V  ∧  𝑅 : 𝐼 ⟶ V )  →  ( TopOpen  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 16 | 12 14 15 | sylancr | ⊢ ( 𝜑  →  ( TopOpen  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 17 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 18 | 17 | ptval | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( TopOpen  ∘  𝑅 )  Fn  𝐼 )  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 19 | 3 16 18 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 20 | 19 | unieqd | ⊢ ( 𝜑  →  ∪  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ∪  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 21 |  | fvco2 | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝑦  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 22 | 4 21 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 24 |  | eqid | ⊢ ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 25 | 23 24 | topnval | ⊢ ( ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) )  ↾t  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 26 |  | restsspw | ⊢ ( ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) )  ↾t  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) )  ⊆  𝒫  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 27 | 25 26 | eqsstrri | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) )  ⊆  𝒫  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 28 | 22 27 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ⊆  𝒫  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | sseld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  →  ( 𝑔 ‘ 𝑦 )  ∈  𝒫  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 30 |  | fvex | ⊢ ( 𝑔 ‘ 𝑦 )  ∈  V | 
						
							| 31 | 30 | elpw | ⊢ ( ( 𝑔 ‘ 𝑦 )  ∈  𝒫  ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  ↔  ( 𝑔 ‘ 𝑦 )  ⊆  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 32 | 29 31 | imbitrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  →  ( 𝑔 ‘ 𝑦 )  ⊆  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 33 | 32 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  →  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ⊆  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 34 |  | simpl2 | ⊢ ( ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) )  →  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) ) | 
						
							| 35 | 33 34 | impel | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ⊆  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 36 |  | ss2ixp | ⊢ ( ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ⊆  ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  →  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑦  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑦  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 38 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) )  →  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 39 | 1 8 2 3 4 | prdsbas2 | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  X 𝑦  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) )  →  ( Base ‘ 𝑌 )  =  X 𝑦  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 41 | 37 38 40 | 3sstr4d | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) )  →  𝑥  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) )  →  𝑥  ⊆  ( Base ‘ 𝑌 ) ) ) | 
						
							| 43 | 42 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) )  →  𝑥  ⊆  ( Base ‘ 𝑌 ) ) ) | 
						
							| 44 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  ( Base ‘ 𝑌 )  ↔  𝑥  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 45 | 43 44 | imbitrrdi | ⊢ ( 𝜑  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) )  →  𝑥  ∈  𝒫  ( Base ‘ 𝑌 ) ) ) | 
						
							| 46 | 45 | abssdv | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  𝒫  ( Base ‘ 𝑌 ) ) | 
						
							| 47 |  | fvex | ⊢ ( Base ‘ 𝑌 )  ∈  V | 
						
							| 48 | 47 | pwex | ⊢ 𝒫  ( Base ‘ 𝑌 )  ∈  V | 
						
							| 49 | 48 | ssex | ⊢ ( { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  𝒫  ( Base ‘ 𝑌 )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ∈  V ) | 
						
							| 50 |  | unitg | ⊢ ( { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ∈  V  →  ∪  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } )  =  ∪  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 51 | 46 49 50 | 3syl | ⊢ ( 𝜑  →  ∪  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } )  =  ∪  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 52 | 20 51 | eqtrd | ⊢ ( 𝜑  →  ∪  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ∪  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 53 |  | sspwuni | ⊢ ( { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  𝒫  ( Base ‘ 𝑌 )  ↔  ∪  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 54 | 46 53 | sylib | ⊢ ( 𝜑  →  ∪  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐼 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 55 | 52 54 | eqsstrd | ⊢ ( 𝜑  →  ∪  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 56 |  | sspwuni | ⊢ ( ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  ⊆  𝒫  ( Base ‘ 𝑌 )  ↔  ∪  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  ⊆  ( Base ‘ 𝑌 ) ) | 
						
							| 57 | 55 56 | sylibr | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  ⊆  𝒫  ( Base ‘ 𝑌 ) ) | 
						
							| 58 | 11 57 | eqsstrd | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  ⊆  𝒫  ( Base ‘ 𝑌 ) ) | 
						
							| 59 | 8 10 | topnid | ⊢ ( ( TopSet ‘ 𝑌 )  ⊆  𝒫  ( Base ‘ 𝑌 )  →  ( TopSet ‘ 𝑌 )  =  ( TopOpen ‘ 𝑌 ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  =  ( TopOpen ‘ 𝑌 ) ) | 
						
							| 61 | 60 5 | eqtr4di | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  =  𝑂 ) | 
						
							| 62 | 61 11 | eqtr3d | ⊢ ( 𝜑  →  𝑂  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) |