Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbnd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsbnd.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsbnd.v |
⊢ 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
4 |
|
prdsbnd.e |
⊢ 𝐸 = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) |
5 |
|
prdsbnd.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
6 |
|
prdsbnd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
7 |
|
prdsbnd.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
8 |
|
prdsbnd.r |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
9 |
|
prdstotbnd.m |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( TotBnd ‘ 𝑉 ) ) |
10 |
|
eqid |
⊢ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
12 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ V ) |
14 |
|
totbndmet |
⊢ ( 𝐸 ∈ ( TotBnd ‘ 𝑉 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
15 |
9 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
16 |
10 11 3 4 12 6 7 13 15
|
prdsmet |
⊢ ( 𝜑 → ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) ) |
17 |
|
dffn5 |
⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
18 |
8 17
|
sylib |
⊢ ( 𝜑 → 𝑅 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
20 |
1 19
|
syl5eq |
⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
22 |
5 21
|
syl5eq |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
23 |
20
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
24 |
2 23
|
syl5eq |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) ) |
26 |
16 22 25
|
3eltr4d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐼 ∈ Fin ) |
28 |
|
istotbnd3 |
⊢ ( 𝐸 ∈ ( TotBnd ‘ 𝑉 ) ↔ ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
29 |
28
|
simprbi |
⊢ ( 𝐸 ∈ ( TotBnd ‘ 𝑉 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) |
30 |
9 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) |
31 |
30
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) |
32 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ↔ ∃ 𝑤 ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
33 |
|
rexv |
⊢ ( ∃ 𝑤 ∈ V ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ↔ ∃ 𝑤 ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
34 |
32 33
|
bitr4i |
⊢ ( ∃ 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ↔ ∃ 𝑤 ∈ V ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
35 |
31 34
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ V ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
36 |
35
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐼 ) → ∃ 𝑤 ∈ V ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
37 |
36
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ V ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
38 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ) ) |
39 |
|
iuneq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) |
40 |
39
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ↔ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) |
41 |
38 40
|
anbi12d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) |
42 |
41
|
ac6sfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ V ( 𝑤 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ 𝑤 ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) → ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) |
43 |
27 37 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) |
44 |
|
elfpw |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ↔ ( ( 𝑓 ‘ 𝑥 ) ⊆ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ Fin ) ) |
45 |
44
|
simplbi |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) → ( 𝑓 ‘ 𝑥 ) ⊆ 𝑉 ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) → ( 𝑓 ‘ 𝑥 ) ⊆ 𝑉 ) |
47 |
46
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ 𝑉 ) |
48 |
47
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ 𝑉 ) |
49 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ 𝑉 → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ X 𝑥 ∈ 𝐼 𝑉 ) |
50 |
48 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ X 𝑥 ∈ 𝐼 𝑉 ) |
51 |
|
fnfi |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ Fin ) → 𝑅 ∈ Fin ) |
52 |
8 7 51
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
53 |
8
|
fndmd |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
54 |
1 6 52 2 53
|
prdsbas |
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
55 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
56 |
|
ixpeq2 |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) → X 𝑥 ∈ 𝐼 𝑉 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
57 |
55 56
|
ax-mp |
⊢ X 𝑥 ∈ 𝐼 𝑉 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
58 |
54 57
|
eqtr4di |
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 𝑉 ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → 𝐵 = X 𝑥 ∈ 𝐼 𝑉 ) |
60 |
50 59
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ 𝐵 ) |
61 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → 𝐼 ∈ Fin ) |
62 |
44
|
simprbi |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) → ( 𝑓 ‘ 𝑥 ) ∈ Fin ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) → ( 𝑓 ‘ 𝑥 ) ∈ Fin ) |
64 |
63
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ Fin ) |
65 |
64
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ Fin ) |
66 |
|
ixpfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ Fin ) → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ Fin ) |
67 |
61 65 66
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ Fin ) |
68 |
|
elfpw |
⊢ ( X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ 𝐵 ∧ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ Fin ) ) |
69 |
60 67 68
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
70 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝐵 ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
71 |
26 70
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
72 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
73 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
74 |
73
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
75 |
74
|
an32s |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑟 ∈ ℝ* ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
76 |
75
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑟 ∈ ℝ* ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
77 |
71 72 76
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
79 |
|
ssralv |
⊢ ( X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 → ∀ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) ) |
80 |
60 78 79
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∀ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
81 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ↔ ∀ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
82 |
80 81
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
83 |
61
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → 𝐼 ∈ Fin ) |
84 |
59
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ( 𝑔 ∈ 𝐵 ↔ 𝑔 ∈ X 𝑥 ∈ 𝐼 𝑉 ) ) |
85 |
|
vex |
⊢ 𝑔 ∈ V |
86 |
85
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐼 𝑉 ↔ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) |
87 |
86
|
simprbi |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐼 𝑉 → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
88 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
89 |
|
eliun |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ↔ ∃ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) |
90 |
|
rexv |
⊢ ( ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
91 |
88 89 90
|
3bitr4i |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ↔ ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
92 |
|
eleq2 |
⊢ ( ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 → ( ( 𝑔 ‘ 𝑥 ) ∈ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ↔ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) |
93 |
91 92
|
bitr3id |
⊢ ( ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 → ( ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) |
94 |
93
|
biimprd |
⊢ ( ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 → ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
95 |
94
|
adantl |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 → ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
96 |
95
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 → ∀ 𝑥 ∈ 𝐼 ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
97 |
96
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 → ∀ 𝑥 ∈ 𝐼 ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
98 |
87 97
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ( 𝑔 ∈ X 𝑥 ∈ 𝐼 𝑉 → ∀ 𝑥 ∈ 𝐼 ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
99 |
84 98
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ( 𝑔 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐼 ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
100 |
99
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
101 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑦 ‘ 𝑥 ) → ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
102 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑦 ‘ 𝑥 ) → ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
103 |
102
|
eleq2d |
⊢ ( 𝑧 = ( 𝑦 ‘ 𝑥 ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ↔ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
104 |
101 103
|
anbi12d |
⊢ ( 𝑧 = ( 𝑦 ‘ 𝑥 ) → ( ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
105 |
104
|
ac6sfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐼 ∃ 𝑧 ∈ V ( 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) ) ) → ∃ 𝑦 ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
106 |
83 100 105
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ∃ 𝑦 ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
107 |
|
ffn |
⊢ ( 𝑦 : 𝐼 ⟶ V → 𝑦 Fn 𝐼 ) |
108 |
|
simpl |
⊢ ( ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
109 |
108
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
110 |
107 109
|
anim12i |
⊢ ( ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) → ( 𝑦 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
111 |
|
vex |
⊢ 𝑦 ∈ V |
112 |
111
|
elixp |
⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
113 |
110 112
|
sylibr |
⊢ ( ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) → 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ) |
114 |
113
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ) |
115 |
84
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ X 𝑥 ∈ 𝐼 𝑉 ) |
116 |
|
ixpfn |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐼 𝑉 → 𝑔 Fn 𝐼 ) |
117 |
115 116
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → 𝑔 Fn 𝐼 ) |
118 |
117
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑔 Fn 𝐼 ) |
119 |
|
simpr |
⊢ ( ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
120 |
119
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
121 |
120
|
ad2antll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
122 |
85
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ↔ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
123 |
118 121 122
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑔 ∈ X 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
124 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝜑 ) |
125 |
50
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ⊆ X 𝑥 ∈ 𝐼 𝑉 ) |
126 |
125 114
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑦 ∈ X 𝑥 ∈ 𝐼 𝑉 ) |
127 |
124 58
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝐵 = X 𝑥 ∈ 𝐼 𝑉 ) |
128 |
126 127
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑦 ∈ 𝐵 ) |
129 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑟 ∈ ℝ+ ) |
130 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑥 ) ) |
131 |
130
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) |
132 |
131
|
oveq2i |
⊢ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
133 |
20 132
|
eqtr4di |
⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) |
134 |
133
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
135 |
5 134
|
syl5eq |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
136 |
135
|
fveq2d |
⊢ ( 𝜑 → ( ball ‘ 𝐷 ) = ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) ) |
137 |
136
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) |
138 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) |
139 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) |
140 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑆 ∈ 𝑊 ) |
141 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ Fin ) |
142 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ V ) |
143 |
|
metxmet |
⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
144 |
15 143
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
145 |
144
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
146 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑦 ∈ 𝐵 ) |
147 |
133
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
148 |
2 147
|
syl5eq |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
150 |
146 149
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑦 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
151 |
72
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ* ) |
152 |
|
rpgt0 |
⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) |
153 |
152
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 0 < 𝑟 ) |
154 |
132 138 3 4 139 140 141 142 145 150 151 153
|
prdsbl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑦 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) = X 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
155 |
137 154
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
156 |
124 128 129 155
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
157 |
123 156
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
158 |
114 157
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) ∧ ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∧ 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
159 |
158
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∧ 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
160 |
159
|
eximdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ( ∃ 𝑦 ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) → ∃ 𝑦 ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∧ 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
161 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ∃ 𝑦 ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∧ 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
162 |
160 161
|
syl6ibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ( ∃ 𝑦 ( 𝑦 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑦 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑦 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
163 |
106 162
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
164 |
163
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ( 𝑔 ∈ 𝐵 → ∃ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
165 |
|
eliun |
⊢ ( 𝑔 ∈ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ∃ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) 𝑔 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
166 |
164 165
|
syl6ibr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ( 𝑔 ∈ 𝐵 → 𝑔 ∈ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
167 |
166
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → 𝐵 ⊆ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
168 |
82 167
|
eqssd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) |
169 |
|
iuneq1 |
⊢ ( 𝑣 = X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) → ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
170 |
169
|
eqeq1d |
⊢ ( 𝑣 = X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) → ( ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ↔ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) ) |
171 |
170
|
rspcev |
⊢ ( ( X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) → ∃ 𝑣 ∈ ( 𝒫 𝐵 ∩ Fin ) ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) |
172 |
69 168 171
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 : 𝐼 ⟶ V ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑥 ) ( 𝑧 ( ball ‘ 𝐸 ) 𝑟 ) = 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐵 ∩ Fin ) ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) |
173 |
43 172
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑣 ∈ ( 𝒫 𝐵 ∩ Fin ) ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) |
174 |
173
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝐵 ∩ Fin ) ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) |
175 |
|
istotbnd3 |
⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝐵 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝐵 ∩ Fin ) ∪ 𝑦 ∈ 𝑣 ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = 𝐵 ) ) |
176 |
26 174 175
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 ∈ ( TotBnd ‘ 𝐵 ) ) |