Metamath Proof Explorer


Theorem prdstps

Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdstopn.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdstopn.s ( 𝜑𝑆𝑉 )
prdstopn.i ( 𝜑𝐼𝑊 )
prdstps.r ( 𝜑𝑅 : 𝐼 ⟶ TopSp )
Assertion prdstps ( 𝜑𝑌 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 prdstopn.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdstopn.s ( 𝜑𝑆𝑉 )
3 prdstopn.i ( 𝜑𝐼𝑊 )
4 prdstps.r ( 𝜑𝑅 : 𝐼 ⟶ TopSp )
5 4 ffvelrnda ( ( 𝜑𝑥𝐼 ) → ( 𝑅𝑥 ) ∈ TopSp )
6 eqid ( Base ‘ ( 𝑅𝑥 ) ) = ( Base ‘ ( 𝑅𝑥 ) )
7 eqid ( TopOpen ‘ ( 𝑅𝑥 ) ) = ( TopOpen ‘ ( 𝑅𝑥 ) )
8 6 7 istps ( ( 𝑅𝑥 ) ∈ TopSp ↔ ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) )
9 5 8 sylib ( ( 𝜑𝑥𝐼 ) → ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) )
10 9 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) )
11 eqid ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) = ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) )
12 11 pttopon ( ( 𝐼𝑊 ∧ ∀ 𝑥𝐼 ( TopOpen ‘ ( 𝑅𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅𝑥 ) ) ) ) → ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) )
13 3 10 12 syl2anc ( 𝜑 → ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) )
14 4 3 fexd ( 𝜑𝑅 ∈ V )
15 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
16 4 fdmd ( 𝜑 → dom 𝑅 = 𝐼 )
17 eqid ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 )
18 1 2 14 15 16 17 prdstset ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
19 topnfn TopOpen Fn V
20 dffn2 ( TopOpen Fn V ↔ TopOpen : V ⟶ V )
21 19 20 mpbi TopOpen : V ⟶ V
22 ssv TopSp ⊆ V
23 fss ( ( 𝑅 : 𝐼 ⟶ TopSp ∧ TopSp ⊆ V ) → 𝑅 : 𝐼 ⟶ V )
24 4 22 23 sylancl ( 𝜑𝑅 : 𝐼 ⟶ V )
25 fcompt ( ( TopOpen : V ⟶ V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) = ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) )
26 21 24 25 sylancr ( 𝜑 → ( TopOpen ∘ 𝑅 ) = ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) )
27 26 fveq2d ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) )
28 18 27 eqtrd ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( 𝑥𝐼 ↦ ( TopOpen ‘ ( 𝑅𝑥 ) ) ) ) )
29 1 2 14 15 16 prdsbas ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )
30 29 fveq2d ( 𝜑 → ( TopOn ‘ ( Base ‘ 𝑌 ) ) = ( TopOn ‘ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) )
31 13 28 30 3eltr4d ( 𝜑 → ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) )
32 15 17 tsettps ( ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) → 𝑌 ∈ TopSp )
33 31 32 syl ( 𝜑𝑌 ∈ TopSp )