| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdstopn.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdstopn.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdstopn.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 4 |  | prdstps.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ TopSp ) | 
						
							| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑥 )  ∈  TopSp ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 7 |  | eqid | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 8 | 6 7 | istps | ⊢ ( ( 𝑅 ‘ 𝑥 )  ∈  TopSp  ↔  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) )  ∈  ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 5 8 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) )  ∈  ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) )  ∈  ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( ∏t ‘ ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  =  ( ∏t ‘ ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 12 | 11 | pttopon | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ∀ 𝑥  ∈  𝐼 ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) )  ∈  ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  →  ( ∏t ‘ ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  ∈  ( TopOn ‘ X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 13 | 3 10 12 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  ∈  ( TopOn ‘ X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 4 3 | fexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 16 | 4 | fdmd | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 17 |  | eqid | ⊢ ( TopSet ‘ 𝑌 )  =  ( TopSet ‘ 𝑌 ) | 
						
							| 18 | 1 2 14 15 16 17 | prdstset | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) | 
						
							| 19 |  | topnfn | ⊢ TopOpen  Fn  V | 
						
							| 20 |  | dffn2 | ⊢ ( TopOpen  Fn  V  ↔  TopOpen : V ⟶ V ) | 
						
							| 21 | 19 20 | mpbi | ⊢ TopOpen : V ⟶ V | 
						
							| 22 |  | ssv | ⊢ TopSp  ⊆  V | 
						
							| 23 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopSp  ∧  TopSp  ⊆  V )  →  𝑅 : 𝐼 ⟶ V ) | 
						
							| 24 | 4 22 23 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ V ) | 
						
							| 25 |  | fcompt | ⊢ ( ( TopOpen : V ⟶ V  ∧  𝑅 : 𝐼 ⟶ V )  →  ( TopOpen  ∘  𝑅 )  =  ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 26 | 21 24 25 | sylancr | ⊢ ( 𝜑  →  ( TopOpen  ∘  𝑅 )  =  ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( ∏t ‘ ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ) | 
						
							| 28 | 18 27 | eqtrd | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  =  ( ∏t ‘ ( 𝑥  ∈  𝐼  ↦  ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ) | 
						
							| 29 | 1 2 14 15 16 | prdsbas | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( 𝜑  →  ( TopOn ‘ ( Base ‘ 𝑌 ) )  =  ( TopOn ‘ X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 13 28 30 | 3eltr4d | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑌 )  ∈  ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) | 
						
							| 32 | 15 17 | tsettps | ⊢ ( ( TopSet ‘ 𝑌 )  ∈  ( TopOn ‘ ( Base ‘ 𝑌 ) )  →  𝑌  ∈  TopSp ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  𝑌  ∈  TopSp ) |