| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsval.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 3 |
|
prdsval.i |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 4 |
|
prdsval.b |
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 5 |
|
prdsval.a |
⊢ ( 𝜑 → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 6 |
|
prdsval.t |
⊢ ( 𝜑 → × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 7 |
|
prdsval.m |
⊢ ( 𝜑 → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 8 |
|
prdsval.j |
⊢ ( 𝜑 → , = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 9 |
|
prdsval.o |
⊢ ( 𝜑 → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 10 |
|
prdsval.l |
⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 11 |
|
prdsval.d |
⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 12 |
|
prdsval.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 13 |
|
prdsval.x |
⊢ ( 𝜑 → ∙ = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
| 14 |
|
prdsval.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 15 |
|
prdsval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 16 |
|
df-prds |
⊢ Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) ) |
| 18 |
|
vex |
⊢ 𝑟 ∈ V |
| 19 |
18
|
rnex |
⊢ ran 𝑟 ∈ V |
| 20 |
19
|
uniex |
⊢ ∪ ran 𝑟 ∈ V |
| 21 |
20
|
rnex |
⊢ ran ∪ ran 𝑟 ∈ V |
| 22 |
21
|
uniex |
⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 23 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 24 |
23
|
strfvss |
⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ( 𝑟 ‘ 𝑥 ) |
| 25 |
|
fvssunirn |
⊢ ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran 𝑟 |
| 26 |
|
rnss |
⊢ ( ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran 𝑟 → ran ( 𝑟 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑟 ) |
| 27 |
|
uniss |
⊢ ( ran ( 𝑟 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑟 → ∪ ran ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑟 ) |
| 28 |
25 26 27
|
mp2b |
⊢ ∪ ran ( 𝑟 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑟 |
| 29 |
24 28
|
sstri |
⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 |
| 30 |
29
|
rgenw |
⊢ ∀ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 |
| 31 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 ↔ ∀ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 ) |
| 32 |
30 31
|
mpbir |
⊢ ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑟 |
| 33 |
22 32
|
ssexi |
⊢ ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V |
| 34 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) ) |
| 35 |
33 34
|
ax-mp |
⊢ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) |
| 36 |
|
ovex |
⊢ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) ∈ V |
| 37 |
36
|
ssex |
⊢ ( X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ↑m dom 𝑟 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V ) |
| 38 |
35 37
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∈ V ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
| 40 |
39
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑟 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 42 |
41
|
ixpeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 43 |
39
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → dom 𝑟 = dom 𝑅 ) |
| 44 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → dom 𝑅 = 𝐼 ) |
| 45 |
43 44
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → dom 𝑟 = 𝐼 ) |
| 46 |
45
|
ixpeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ) |
| 47 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 48 |
42 46 47
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = 𝐵 ) |
| 49 |
|
prdsvallem |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ V |
| 50 |
49
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ V ) |
| 51 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → 𝑣 = 𝐵 ) |
| 52 |
45
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → dom 𝑟 = 𝐼 ) |
| 53 |
52
|
ixpeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 54 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) = ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 55 |
54
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 56 |
55
|
ixpeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 58 |
53 57
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 59 |
51 51 58
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 60 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → 𝐻 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 61 |
59 60
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = 𝐻 ) |
| 62 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑣 = 𝐵 ) |
| 63 |
62
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( Base ‘ ndx ) , 𝑣 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 64 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 65 |
64
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 66 |
45 65
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 68 |
51 51 67
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 70 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 71 |
69 70
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = + ) |
| 72 |
71
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 = 〈 ( +g ‘ ndx ) , + 〉 ) |
| 73 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 74 |
73
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 75 |
45 74
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 77 |
51 51 76
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 78 |
77
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 79 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 80 |
78 79
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = × ) |
| 81 |
80
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 = 〈 ( .r ‘ ndx ) , × 〉 ) |
| 82 |
63 72 81
|
tpeq123d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ) |
| 83 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑠 = 𝑆 ) |
| 84 |
83
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( Scalar ‘ ndx ) , 𝑠 〉 = 〈 ( Scalar ‘ ndx ) , 𝑆 〉 ) |
| 85 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → 𝑠 = 𝑆 ) |
| 86 |
85
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 87 |
86 2
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( Base ‘ 𝑠 ) = 𝐾 ) |
| 88 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 89 |
88
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 90 |
45 89
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 92 |
87 51 91
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 93 |
92
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 94 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → · = ( 𝑓 ∈ 𝐾 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 95 |
93 94
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = · ) |
| 96 |
95
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) |
| 97 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) = ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 98 |
97
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 99 |
45 98
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 100 |
99
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 101 |
85 100
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 102 |
51 51 101
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 104 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → , = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 105 |
103 104
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = , ) |
| 106 |
105
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 = 〈 ( ·𝑖 ‘ ndx ) , , 〉 ) |
| 107 |
84 96 106
|
tpeq123d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) |
| 108 |
82 107
|
uneq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 109 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑟 = 𝑅 ) |
| 110 |
109
|
coeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( TopOpen ∘ 𝑟 ) = ( TopOpen ∘ 𝑅 ) ) |
| 111 |
110
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 112 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 113 |
111 112
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) = 𝑂 ) |
| 114 |
113
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝑂 〉 ) |
| 115 |
51
|
sseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( { 𝑓 , 𝑔 } ⊆ 𝑣 ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 ) ) |
| 116 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( le ‘ ( 𝑟 ‘ 𝑥 ) ) = ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 117 |
116
|
breqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 118 |
45 117
|
raleqbidv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 119 |
118
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 120 |
115 119
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 121 |
120
|
opabbidv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 122 |
121
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 123 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 124 |
122 123
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = ≤ ) |
| 125 |
124
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 = 〈 ( le ‘ ndx ) , ≤ 〉 ) |
| 126 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 127 |
126
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 128 |
45 127
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 130 |
129
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 131 |
130
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) = ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 132 |
131
|
supeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 133 |
51 51 132
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 135 |
11
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 136 |
134 135
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = 𝐷 ) |
| 137 |
136
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 = 〈 ( dist ‘ ndx ) , 𝐷 〉 ) |
| 138 |
114 125 137
|
tpeq123d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } = { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ) |
| 139 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) |
| 140 |
139
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( Hom ‘ ndx ) , ℎ 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
| 141 |
62
|
sqxpeqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑣 × 𝑣 ) = ( 𝐵 × 𝐵 ) ) |
| 142 |
139
|
oveqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) = ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) ) |
| 143 |
139
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ℎ ‘ 𝑎 ) = ( 𝐻 ‘ 𝑎 ) ) |
| 144 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) = ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 145 |
144
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) = ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ) |
| 146 |
145
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) = ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) |
| 147 |
45 146
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) |
| 148 |
147
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) |
| 149 |
142 143 148
|
mpoeq123dv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) = ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) |
| 150 |
141 62 149
|
mpoeq123dv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
| 151 |
13
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ∙ = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) 𝐻 𝑐 ) , 𝑒 ∈ ( 𝐻 ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
| 152 |
150 151
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ∙ ) |
| 153 |
152
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 = 〈 ( comp ‘ ndx ) , ∙ 〉 ) |
| 154 |
140 153
|
preq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } = { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) |
| 155 |
138 154
|
uneq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) = ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) |
| 156 |
108 155
|
uneq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 157 |
50 61 156
|
csbied2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) ∧ 𝑣 = 𝐵 ) → ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 158 |
38 48 157
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑟 = 𝑅 ) → ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 159 |
158
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) ) → ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 160 |
14
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 161 |
15
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 162 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∈ V |
| 163 |
|
tpex |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ∈ V |
| 164 |
162 163
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∈ V |
| 165 |
|
tpex |
⊢ { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∈ V |
| 166 |
|
prex |
⊢ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ∈ V |
| 167 |
165 166
|
unex |
⊢ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ∈ V |
| 168 |
164 167
|
unex |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ∈ V |
| 169 |
168
|
a1i |
⊢ ( 𝜑 → ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ∈ V ) |
| 170 |
17 159 160 161 169
|
ovmpod |
⊢ ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |
| 171 |
1 170
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , 𝑂 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ∙ 〉 } ) ) ) |