Metamath Proof Explorer


Theorem prdsvalstr

Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion prdsvalstr ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , ⟩ } ) ) Struct ⟨ 1 , 1 5 ⟩

Proof

Step Hyp Ref Expression
1 unass ( ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) ∪ { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , ⟩ } ) )
2 eqid ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } )
3 2 imasvalstr ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) Struct ⟨ 1 , 1 2 ⟩
4 1nn0 1 ∈ ℕ0
5 4nn 4 ∈ ℕ
6 4 5 decnncl 1 4 ∈ ℕ
7 homndx ( Hom ‘ ndx ) = 1 4
8 4nn0 4 ∈ ℕ0
9 5nn 5 ∈ ℕ
10 4lt5 4 < 5
11 4 8 9 10 declt 1 4 < 1 5
12 4 9 decnncl 1 5 ∈ ℕ
13 ccondx ( comp ‘ ndx ) = 1 5
14 6 7 11 12 13 strle2 { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , ⟩ } Struct ⟨ 1 4 , 1 5 ⟩
15 2nn0 2 ∈ ℕ0
16 2lt4 2 < 4
17 4 15 5 16 declt 1 2 < 1 4
18 3 14 17 strleun ( ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) ∪ { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , ⟩ } ) Struct ⟨ 1 , 1 5 ⟩
19 1 18 eqbrtrri ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , 𝐿 ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , ⟩ } ) ) Struct ⟨ 1 , 1 5 ⟩