Metamath Proof Explorer


Theorem prdsvscafval

Description: Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdsbasmpt.b 𝐵 = ( Base ‘ 𝑌 )
prdsvscaval.t · = ( ·𝑠𝑌 )
prdsvscaval.k 𝐾 = ( Base ‘ 𝑆 )
prdsvscaval.s ( 𝜑𝑆𝑉 )
prdsvscaval.i ( 𝜑𝐼𝑊 )
prdsvscaval.r ( 𝜑𝑅 Fn 𝐼 )
prdsvscaval.f ( 𝜑𝐹𝐾 )
prdsvscaval.g ( 𝜑𝐺𝐵 )
prdsvscafval.j ( 𝜑𝐽𝐼 )
Assertion prdsvscafval ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝐽 ) ) ( 𝐺𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdsbasmpt.b 𝐵 = ( Base ‘ 𝑌 )
3 prdsvscaval.t · = ( ·𝑠𝑌 )
4 prdsvscaval.k 𝐾 = ( Base ‘ 𝑆 )
5 prdsvscaval.s ( 𝜑𝑆𝑉 )
6 prdsvscaval.i ( 𝜑𝐼𝑊 )
7 prdsvscaval.r ( 𝜑𝑅 Fn 𝐼 )
8 prdsvscaval.f ( 𝜑𝐹𝐾 )
9 prdsvscaval.g ( 𝜑𝐺𝐵 )
10 prdsvscafval.j ( 𝜑𝐽𝐼 )
11 1 2 3 4 5 6 7 8 9 prdsvscaval ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑥𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝐺𝑥 ) ) ) )
12 2fveq3 ( 𝑥 = 𝐽 → ( ·𝑠 ‘ ( 𝑅𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅𝐽 ) ) )
13 eqidd ( 𝑥 = 𝐽𝐹 = 𝐹 )
14 fveq2 ( 𝑥 = 𝐽 → ( 𝐺𝑥 ) = ( 𝐺𝐽 ) )
15 12 13 14 oveq123d ( 𝑥 = 𝐽 → ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝐺𝑥 ) ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝐽 ) ) ( 𝐺𝐽 ) ) )
16 15 adantl ( ( 𝜑𝑥 = 𝐽 ) → ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝐺𝑥 ) ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝐽 ) ) ( 𝐺𝐽 ) ) )
17 ovexd ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝐽 ) ) ( 𝐺𝐽 ) ) ∈ V )
18 11 16 10 17 fvmptd ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅𝐽 ) ) ( 𝐺𝐽 ) ) )