| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbasmpt.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsvscaval.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 4 |  | prdsvscaval.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | prdsvscaval.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 6 |  | prdsvscaval.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 7 |  | prdsvscaval.r | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 8 |  | prdsvscaval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐾 ) | 
						
							| 9 |  | prdsvscaval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 10 |  | prdsvscafval.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐼 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | prdsvscaval | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 12 |  | 2fveq3 | ⊢ ( 𝑥  =  𝐽  →  (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) )  =  (  ·𝑠  ‘ ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝑥  =  𝐽  →  𝐹  =  𝐹 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝐽 ) ) | 
						
							| 15 | 12 13 14 | oveq123d | ⊢ ( 𝑥  =  𝐽  →  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐽 )  →  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) | 
						
							| 17 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) )  ∈  V ) | 
						
							| 18 | 11 16 10 17 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐹  ·  𝐺 ) ‘ 𝐽 )  =  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |