| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsdsf.y | ⊢ 𝑌  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 2 |  | prdsdsf.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsdsf.v | ⊢ 𝑉  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | prdsdsf.e | ⊢ 𝐸  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 5 |  | prdsdsf.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 6 |  | prdsdsf.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 7 |  | prdsdsf.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑋 ) | 
						
							| 8 |  | prdsdsf.r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  𝑍 ) | 
						
							| 9 |  | prdsdsf.m | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑦 𝑅 | 
						
							| 11 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑅 | 
						
							| 12 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝑅  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 13 | 10 11 12 | cbvmpt | ⊢ ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  ( 𝑦  ∈  𝐼  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 14 | 13 | oveq2i | ⊢ ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) )  =  ( 𝑆 Xs ( 𝑦  ∈  𝐼  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 15 | 1 14 | eqtri | ⊢ 𝑌  =  ( 𝑆 Xs ( 𝑦  ∈  𝐼  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  =  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 17 |  | eqid | ⊢ ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) )  =  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) | 
						
							| 18 | 8 | elexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  V ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  V ) | 
						
							| 20 | 11 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V | 
						
							| 21 | 12 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑅  ∈  V  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V ) ) | 
						
							| 22 | 20 21 | rspc | ⊢ ( 𝑦  ∈  𝐼  →  ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  V  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V ) ) | 
						
							| 23 | 19 22 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V ) | 
						
							| 24 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑥 dist | 
						
							| 26 | 25 11 | nffv | ⊢ Ⅎ 𝑥 ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑥 Base | 
						
							| 28 | 27 11 | nffv | ⊢ Ⅎ 𝑥 ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 29 | 28 28 | nfxp | ⊢ Ⅎ 𝑥 ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 30 | 26 29 | nfres | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑥 ∞Met | 
						
							| 32 | 31 28 | nffv | ⊢ Ⅎ 𝑥 ( ∞Met ‘ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 33 | 30 32 | nfel | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 34 | 12 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( dist ‘ 𝑅 )  =  ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 35 | 12 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 36 | 3 35 | eqtrid | ⊢ ( 𝑥  =  𝑦  →  𝑉  =  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 37 | 36 | sqxpeqd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑉  ×  𝑉 )  =  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) | 
						
							| 38 | 34 37 | reseq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  =  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) ) | 
						
							| 39 | 4 38 | eqtrid | ⊢ ( 𝑥  =  𝑦  →  𝐸  =  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) ) | 
						
							| 40 | 36 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∞Met ‘ 𝑉 )  =  ( ∞Met ‘ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) | 
						
							| 41 | 39 40 | eleq12d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ↔  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) ) | 
						
							| 42 | 33 41 | rspc | ⊢ ( 𝑦  ∈  𝐼  →  ( ∀ 𝑥  ∈  𝐼 𝐸  ∈  ( ∞Met ‘ 𝑉 )  →  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) ) | 
						
							| 43 | 24 42 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ×  ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) ) | 
						
							| 44 | 15 2 16 17 5 6 7 23 43 | prdsxmetlem | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝐵 ) ) |