| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsxms.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  𝑆  ∈  𝑊 ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  𝐼  ∈  Fin ) | 
						
							| 4 |  | eqid | ⊢ ( dist ‘ 𝑌 )  =  ( dist ‘ 𝑌 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  𝑅 : 𝐼 ⟶ ∞MetSp ) | 
						
							| 7 | 1 2 3 4 5 6 | prdsxmslem1 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( dist ‘ 𝑌 )  ∈  ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) | 
						
							| 8 |  | ssid | ⊢ ( Base ‘ 𝑌 )  ⊆  ( Base ‘ 𝑌 ) | 
						
							| 9 |  | xmetres2 | ⊢ ( ( ( dist ‘ 𝑌 )  ∈  ( ∞Met ‘ ( Base ‘ 𝑌 ) )  ∧  ( Base ‘ 𝑌 )  ⊆  ( Base ‘ 𝑌 ) )  →  ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( TopOpen ‘ 𝑌 )  =  ( TopOpen ‘ 𝑌 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑘 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑘 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) )  =  ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑘 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) )  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 15 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) }  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) } | 
						
							| 16 | 1 2 3 4 5 6 11 12 13 14 15 | prdsxmslem2 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( TopOpen ‘ 𝑌 )  =  ( MetOpen ‘ ( dist ‘ 𝑌 ) ) ) | 
						
							| 17 |  | xmetf | ⊢ ( ( dist ‘ 𝑌 )  ∈  ( ∞Met ‘ ( Base ‘ 𝑌 ) )  →  ( dist ‘ 𝑌 ) : ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ⟶ ℝ* ) | 
						
							| 18 |  | ffn | ⊢ ( ( dist ‘ 𝑌 ) : ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ⟶ ℝ*  →  ( dist ‘ 𝑌 )  Fn  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) | 
						
							| 19 |  | fnresdm | ⊢ ( ( dist ‘ 𝑌 )  Fn  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) )  →  ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  =  ( dist ‘ 𝑌 ) ) | 
						
							| 20 | 7 17 18 19 | 4syl | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  =  ( dist ‘ 𝑌 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( MetOpen ‘ ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) )  =  ( MetOpen ‘ ( dist ‘ 𝑌 ) ) ) | 
						
							| 22 | 16 21 | eqtr4d | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( TopOpen ‘ 𝑌 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  =  ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) | 
						
							| 24 | 11 5 23 | isxms2 | ⊢ ( 𝑌  ∈  ∞MetSp  ↔  ( ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑌 ) )  ∧  ( TopOpen ‘ 𝑌 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑌 )  ↾  ( ( Base ‘ 𝑌 )  ×  ( Base ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 25 | 10 22 24 | sylanbrc | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝐼  ∈  Fin  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  𝑌  ∈  ∞MetSp ) |