| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsxms.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
simp1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑆 ∈ 𝑊 ) |
| 3 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝐼 ∈ Fin ) |
| 4 |
|
eqid |
⊢ ( dist ‘ 𝑌 ) = ( dist ‘ 𝑌 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 6 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 7 |
1 2 3 4 5 6
|
prdsxmslem1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( dist ‘ 𝑌 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 8 |
|
ssid |
⊢ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) |
| 9 |
|
xmetres2 |
⊢ ( ( ( dist ‘ 𝑌 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 10 |
7 8 9
|
sylancl |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 11 |
|
eqid |
⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) |
| 13 |
|
eqid |
⊢ ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) |
| 15 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } |
| 16 |
1 2 3 4 5 6 11 12 13 14 15
|
prdsxmslem2 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( TopOpen ‘ 𝑌 ) = ( MetOpen ‘ ( dist ‘ 𝑌 ) ) ) |
| 17 |
|
xmetf |
⊢ ( ( dist ‘ 𝑌 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) → ( dist ‘ 𝑌 ) : ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ⟶ ℝ* ) |
| 18 |
|
ffn |
⊢ ( ( dist ‘ 𝑌 ) : ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ⟶ ℝ* → ( dist ‘ 𝑌 ) Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) |
| 19 |
|
fnresdm |
⊢ ( ( dist ‘ 𝑌 ) Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( dist ‘ 𝑌 ) ) |
| 20 |
7 17 18 19
|
4syl |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( dist ‘ 𝑌 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( MetOpen ‘ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) = ( MetOpen ‘ ( dist ‘ 𝑌 ) ) ) |
| 22 |
16 21
|
eqtr4d |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( TopOpen ‘ 𝑌 ) = ( MetOpen ‘ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) ) |
| 23 |
|
eqid |
⊢ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) |
| 24 |
11 5 23
|
isxms2 |
⊢ ( 𝑌 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( TopOpen ‘ 𝑌 ) = ( MetOpen ‘ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) ) ) |
| 25 |
10 22 24
|
sylanbrc |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp ) |