| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsxms.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsxms.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 3 |  | prdsxms.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 4 |  | prdsxms.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 5 |  | prdsxms.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 6 |  | prdsxms.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ ∞MetSp ) | 
						
							| 7 |  | prdsxms.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑌 ) | 
						
							| 8 |  | prdsxms.v | ⊢ 𝑉  =  ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 9 |  | prdsxms.e | ⊢ 𝐸  =  ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 10 |  | prdsxms.k | ⊢ 𝐾  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 11 |  | prdsxms.c | ⊢ 𝐶  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) } | 
						
							| 12 |  | topnfn | ⊢ TopOpen  Fn  V | 
						
							| 13 | 6 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 14 |  | dffn2 | ⊢ ( 𝑅  Fn  𝐼  ↔  𝑅 : 𝐼 ⟶ V ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ V ) | 
						
							| 16 |  | fnfco | ⊢ ( ( TopOpen  Fn  V  ∧  𝑅 : 𝐼 ⟶ V )  →  ( TopOpen  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 17 | 12 15 16 | sylancr | ⊢ ( 𝜑  →  ( TopOpen  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 18 | 11 | ptval | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( TopOpen  ∘  𝑅 )  Fn  𝐼 )  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( topGen ‘ 𝐶 ) ) | 
						
							| 19 | 3 17 18 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( topGen ‘ 𝐶 ) ) | 
						
							| 20 |  | eldifsn | ⊢ ( 𝑥  ∈  ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  ↔  ( 𝑥  ∈  ran  ( ball ‘ 𝐷 )  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 21 | 1 2 3 4 5 6 | prdsxmslem1 | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 22 |  | blrn | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  →  ( 𝑥  ∈  ran  ( ball ‘ 𝐷 )  ↔  ∃ 𝑝  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( ball ‘ 𝐷 )  ↔  ∃ 𝑝  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 24 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  𝐷  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 25 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  𝑝  ∈  𝐵 ) | 
						
							| 26 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  𝑟  ∈  ℝ* ) | 
						
							| 27 |  | xbln0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  ∧  𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  →  ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ≠  ∅  ↔  0  <  𝑟 ) ) | 
						
							| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ≠  ∅  ↔  0  <  𝑟 ) ) | 
						
							| 29 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝐼  ∈  Fin ) | 
						
							| 30 | 29 | mptexd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  ∈  V ) | 
						
							| 31 |  | ovex | ⊢ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 )  ∈  V | 
						
							| 32 | 31 | rgenw | ⊢ ∀ 𝑛  ∈  𝐼 ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 )  ∈  V | 
						
							| 33 |  | eqid | ⊢ ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) | 
						
							| 34 | 33 | fnmpt | ⊢ ( ∀ 𝑛  ∈  𝐼 ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 )  ∈  V  →  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼 ) | 
						
							| 35 | 32 34 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼 ) | 
						
							| 36 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑅 : 𝐼 ⟶ ∞MetSp ) | 
						
							| 37 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑘 )  ∈  ∞MetSp ) | 
						
							| 38 | 8 9 | xmsxmet | ⊢ ( ( 𝑅 ‘ 𝑘 )  ∈  ∞MetSp  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) )  =  ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( Base ‘ ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) )  =  ( Base ‘ ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 42 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑆  ∈  𝑊 ) | 
						
							| 43 | 37 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ∀ 𝑘  ∈  𝐼 ( 𝑅 ‘ 𝑘 )  ∈  ∞MetSp ) | 
						
							| 44 |  | simp2l | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑝  ∈  𝐵 ) | 
						
							| 45 | 36 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑅  =  ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑆 Xs 𝑅 )  =  ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 47 | 1 46 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑌  =  ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 49 | 5 48 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝐵  =  ( Base ‘ ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 50 | 44 49 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑝  ∈  ( Base ‘ ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 51 | 40 41 42 29 43 8 50 | prdsbascl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ∀ 𝑘  ∈  𝐼 ( 𝑝 ‘ 𝑘 )  ∈  𝑉 ) | 
						
							| 52 | 51 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑝 ‘ 𝑘 )  ∈  𝑉 ) | 
						
							| 53 |  | simp2r | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑟  ∈  ℝ* ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  𝑟  ∈  ℝ* ) | 
						
							| 55 |  | eqid | ⊢ ( MetOpen ‘ 𝐸 )  =  ( MetOpen ‘ 𝐸 ) | 
						
							| 56 | 55 | blopn | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑉  ∧  𝑟  ∈  ℝ* )  →  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ∈  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 57 | 39 52 54 56 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ∈  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 58 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  =  ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 59 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 60 | 59 8 | eqtr4di | ⊢ ( 𝑛  =  𝑘  →  ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  =  𝑉 ) | 
						
							| 61 | 60 | sqxpeqd | ⊢ ( 𝑛  =  𝑘  →  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) )  =  ( 𝑉  ×  𝑉 ) ) | 
						
							| 62 | 58 61 | reseq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) )  =  ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) )  ↾  ( 𝑉  ×  𝑉 ) ) ) | 
						
							| 63 | 62 9 | eqtr4di | ⊢ ( 𝑛  =  𝑘  →  ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) )  =  𝐸 ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) )  =  ( ball ‘ 𝐸 ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑝 ‘ 𝑛 )  =  ( 𝑝 ‘ 𝑘 ) ) | 
						
							| 66 |  | eqidd | ⊢ ( 𝑛  =  𝑘  →  𝑟  =  𝑟 ) | 
						
							| 67 | 64 65 66 | oveq123d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 )  =  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 68 |  | ovex | ⊢ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ∈  V | 
						
							| 69 | 67 33 68 | fvmpt | ⊢ ( 𝑘  ∈  𝐼  →  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  =  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  =  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 71 |  | fvco3 | ⊢ ( ( 𝑅 : 𝐼 ⟶ ∞MetSp  ∧  𝑘  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 72 | 71 10 | eqtr4di | ⊢ ( ( 𝑅 : 𝐼 ⟶ ∞MetSp  ∧  𝑘  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  𝐾 ) | 
						
							| 73 | 36 72 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  𝐾 ) | 
						
							| 74 | 10 8 9 | xmstopn | ⊢ ( ( 𝑅 ‘ 𝑘 )  ∈  ∞MetSp  →  𝐾  =  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 75 | 37 74 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  𝐾  =  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 76 | 73 75 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 77 | 57 70 76 | 3eltr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 78 | 77 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ∀ 𝑘  ∈  𝐼 ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 79 | 36 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑅  =  ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑆 Xs 𝑅 )  =  ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 81 | 1 80 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑌  =  ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 82 | 81 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( dist ‘ 𝑌 )  =  ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) | 
						
							| 83 | 4 82 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝐷  =  ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( ball ‘ 𝐷 )  =  ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 85 | 84 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  ( 𝑝 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑅 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 87 | 86 | cbvmptv | ⊢ ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) )  =  ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 88 | 87 | oveq2i | ⊢ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) )  =  ( 𝑆 Xs ( 𝑘  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 89 |  | eqid | ⊢ ( Base ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) )  =  ( Base ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 90 |  | eqid | ⊢ ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) )  =  ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 91 | 81 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) | 
						
							| 92 | 5 91 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝐵  =  ( Base ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) | 
						
							| 93 | 44 92 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  𝑝  ∈  ( Base ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) | 
						
							| 94 |  | simp3 | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  0  <  𝑟 ) | 
						
							| 95 | 88 89 8 9 90 42 29 37 39 93 53 94 | prdsbl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑝 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 96 | 85 95 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 97 |  | fneq1 | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( 𝑔  Fn  𝐼  ↔  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼 ) ) | 
						
							| 98 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( 𝑔 ‘ 𝑘 )  =  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ) | 
						
							| 99 | 98 | eleq1d | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ↔  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 100 | 99 | ralbidv | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 101 | 97 100 | anbi12d | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ↔  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 102 | 98 69 | sylan9eq | ⊢ ( ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑔 ‘ 𝑘 )  =  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 103 | 102 | ixpeq2dva | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 104 | 103 | eqeq2d | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ↔  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) | 
						
							| 105 | 101 104 | anbi12d | ⊢ ( 𝑔  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  →  ( ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) )  ↔  ( ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) | 
						
							| 106 | 105 | spcegv | ⊢ ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  ∈  V  →  ( ( ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 107 | 106 | 3impib | ⊢ ( ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  ∈  V  ∧  ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) )  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( ( 𝑛  ∈  𝐼  ↦  ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) )  ↾  ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) )  ×  ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 108 | 30 35 78 96 107 | syl121anc | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  ∧  0  <  𝑟 )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 109 | 108 | 3expia | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ( 0  <  𝑟  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 110 | 28 109 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ≠  ∅  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  ∧  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ≠  ∅  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 112 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  ∧  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 113 | 112 | neeq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  ∧  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( 𝑥  ≠  ∅  ↔  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ≠  ∅ ) ) | 
						
							| 114 |  | df-3an | ⊢ ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ↔  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 115 |  | ral0 | ⊢ ∀ 𝑘  ∈  ∅ ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) | 
						
							| 116 |  | difeq2 | ⊢ ( 𝑧  =  𝐼  →  ( 𝐼  ∖  𝑧 )  =  ( 𝐼  ∖  𝐼 ) ) | 
						
							| 117 |  | difid | ⊢ ( 𝐼  ∖  𝐼 )  =  ∅ | 
						
							| 118 | 116 117 | eqtrdi | ⊢ ( 𝑧  =  𝐼  →  ( 𝐼  ∖  𝑧 )  =  ∅ ) | 
						
							| 119 | 118 | raleqdv | ⊢ ( 𝑧  =  𝐼  →  ( ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  ∅ ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) | 
						
							| 120 | 119 | rspcev | ⊢ ( ( 𝐼  ∈  Fin  ∧  ∀ 𝑘  ∈  ∅ ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  →  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 121 | 3 115 120 | sylancl | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 123 | 122 | biantrud | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ↔  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 124 | 114 123 | bitr4id | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ↔  ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) ) ) | 
						
							| 125 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  →  ( 𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ↔  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 126 | 124 125 | bi2anan9 | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  ∧  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) )  ↔  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 127 | 126 | exbidv | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  ∧  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) )  ↔  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 128 | 111 113 127 | 3imtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  ∧  𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( 𝑥  ≠  ∅  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 129 | 128 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* ) )  →  ( 𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  →  ( 𝑥  ≠  ∅  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 130 | 129 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  →  ( 𝑥  ≠  ∅  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 131 | 23 130 | sylbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( ball ‘ 𝐷 )  →  ( 𝑥  ≠  ∅  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 132 | 131 | impd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ran  ( ball ‘ 𝐷 )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 133 | 20 132 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 134 | 133 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 135 |  | ssab | ⊢ ( ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  ⊆  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) }  ↔  ∀ 𝑥 ( 𝑥  ∈  ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  →  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 136 | 134 135 | sylibr | ⊢ ( 𝜑  →  ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  ⊆  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 )  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑘  ∈  ( 𝐼  ∖  𝑧 ) ( 𝑔 ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) )  ∧  𝑥  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) } ) | 
						
							| 137 | 136 11 | sseqtrrdi | ⊢ ( 𝜑  →  ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  ⊆  𝐶 ) | 
						
							| 138 |  | ssv | ⊢ ∞MetSp  ⊆  V | 
						
							| 139 |  | fnssres | ⊢ ( ( TopOpen  Fn  V  ∧  ∞MetSp  ⊆  V )  →  ( TopOpen  ↾  ∞MetSp )  Fn  ∞MetSp ) | 
						
							| 140 | 12 138 139 | mp2an | ⊢ ( TopOpen  ↾  ∞MetSp )  Fn  ∞MetSp | 
						
							| 141 |  | fvres | ⊢ ( 𝑥  ∈  ∞MetSp  →  ( ( TopOpen  ↾  ∞MetSp ) ‘ 𝑥 )  =  ( TopOpen ‘ 𝑥 ) ) | 
						
							| 142 |  | xmstps | ⊢ ( 𝑥  ∈  ∞MetSp  →  𝑥  ∈  TopSp ) | 
						
							| 143 |  | eqid | ⊢ ( TopOpen ‘ 𝑥 )  =  ( TopOpen ‘ 𝑥 ) | 
						
							| 144 | 143 | tpstop | ⊢ ( 𝑥  ∈  TopSp  →  ( TopOpen ‘ 𝑥 )  ∈  Top ) | 
						
							| 145 | 142 144 | syl | ⊢ ( 𝑥  ∈  ∞MetSp  →  ( TopOpen ‘ 𝑥 )  ∈  Top ) | 
						
							| 146 | 141 145 | eqeltrd | ⊢ ( 𝑥  ∈  ∞MetSp  →  ( ( TopOpen  ↾  ∞MetSp ) ‘ 𝑥 )  ∈  Top ) | 
						
							| 147 | 146 | rgen | ⊢ ∀ 𝑥  ∈  ∞MetSp ( ( TopOpen  ↾  ∞MetSp ) ‘ 𝑥 )  ∈  Top | 
						
							| 148 |  | ffnfv | ⊢ ( ( TopOpen  ↾  ∞MetSp ) : ∞MetSp ⟶ Top  ↔  ( ( TopOpen  ↾  ∞MetSp )  Fn  ∞MetSp  ∧  ∀ 𝑥  ∈  ∞MetSp ( ( TopOpen  ↾  ∞MetSp ) ‘ 𝑥 )  ∈  Top ) ) | 
						
							| 149 | 140 147 148 | mpbir2an | ⊢ ( TopOpen  ↾  ∞MetSp ) : ∞MetSp ⟶ Top | 
						
							| 150 |  | fco2 | ⊢ ( ( ( TopOpen  ↾  ∞MetSp ) : ∞MetSp ⟶ Top  ∧  𝑅 : 𝐼 ⟶ ∞MetSp )  →  ( TopOpen  ∘  𝑅 ) : 𝐼 ⟶ Top ) | 
						
							| 151 | 149 6 150 | sylancr | ⊢ ( 𝜑  →  ( TopOpen  ∘  𝑅 ) : 𝐼 ⟶ Top ) | 
						
							| 152 |  | eqid | ⊢ X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  =  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) | 
						
							| 153 | 11 152 | ptbasfi | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( TopOpen  ∘  𝑅 ) : 𝐼 ⟶ Top )  →  𝐶  =  ( fi ‘ ( { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ∪  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 154 | 3 151 153 | syl2anc | ⊢ ( 𝜑  →  𝐶  =  ( fi ‘ ( { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ∪  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 155 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 156 | 155 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  →  ( MetOpen ‘ 𝐷 )  ∈  Top ) | 
						
							| 157 | 21 156 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  ∈  Top ) | 
						
							| 158 | 1 5 2 3 13 | prdsbas2 | ⊢ ( 𝜑  →  𝐵  =  X 𝑘  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 159 | 6 72 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  𝐾 ) | 
						
							| 160 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑘 )  ∈  ∞MetSp ) | 
						
							| 161 |  | xmstps | ⊢ ( ( 𝑅 ‘ 𝑘 )  ∈  ∞MetSp  →  ( 𝑅 ‘ 𝑘 )  ∈  TopSp ) | 
						
							| 162 | 160 161 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑘 )  ∈  TopSp ) | 
						
							| 163 | 8 10 | istps | ⊢ ( ( 𝑅 ‘ 𝑘 )  ∈  TopSp  ↔  𝐾  ∈  ( TopOn ‘ 𝑉 ) ) | 
						
							| 164 | 162 163 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐾  ∈  ( TopOn ‘ 𝑉 ) ) | 
						
							| 165 | 159 164 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∈  ( TopOn ‘ 𝑉 ) ) | 
						
							| 166 |  | toponuni | ⊢ ( ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  ∈  ( TopOn ‘ 𝑉 )  →  𝑉  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 167 | 165 166 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑉  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 168 | 8 167 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( Base ‘ ( 𝑅 ‘ 𝑘 ) )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 169 | 168 | ixpeq2dva | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 170 | 158 169 | eqtrd | ⊢ ( 𝜑  →  𝐵  =  X 𝑘  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ) | 
						
							| 171 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) ) | 
						
							| 172 | 171 | unieqd | ⊢ ( 𝑘  =  𝑛  →  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) ) | 
						
							| 173 | 172 | cbvixpv | ⊢ X 𝑘  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) | 
						
							| 174 | 170 173 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) ) | 
						
							| 175 | 155 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  →  ( MetOpen ‘ 𝐷 )  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 176 | 21 175 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 177 |  | toponmax | ⊢ ( ( MetOpen ‘ 𝐷 )  ∈  ( TopOn ‘ 𝐵 )  →  𝐵  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 178 | 176 177 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 179 | 174 178 | eqeltrrd | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 180 | 179 | snssd | ⊢ ( 𝜑  →  { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ⊆  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 181 | 174 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 182 | 181 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 183 | 182 | cnveqd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 184 | 183 | imaeq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 185 |  | fveq1 | ⊢ ( 𝑤  =  𝑝  →  ( 𝑤 ‘ 𝑘 )  =  ( 𝑝 ‘ 𝑘 ) ) | 
						
							| 186 | 185 | eleq1d | ⊢ ( 𝑤  =  𝑝  →  ( ( 𝑤 ‘ 𝑘 )  ∈  𝑢  ↔  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 187 |  | eqid | ⊢ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) ) | 
						
							| 188 | 187 | mptpreima | ⊢ ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  { 𝑤  ∈  𝐵  ∣  ( 𝑤 ‘ 𝑘 )  ∈  𝑢 } | 
						
							| 189 | 186 188 | elrab2 | ⊢ ( 𝑝  ∈  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ↔  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 190 | 160 38 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 191 | 190 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 192 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  𝑢  ∈  𝐾 ) | 
						
							| 193 | 160 74 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐾  =  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 194 | 193 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  𝐾  =  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 195 | 192 194 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  𝑢  ∈  ( MetOpen ‘ 𝐸 ) ) | 
						
							| 196 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) | 
						
							| 197 | 55 | mopni2 | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑢  ∈  ( MetOpen ‘ 𝐸 )  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 )  →  ∃ 𝑟  ∈  ℝ+ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) | 
						
							| 198 | 191 195 196 197 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ∃ 𝑟  ∈  ℝ+ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) | 
						
							| 199 | 21 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 200 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  𝑝  ∈  𝐵 ) | 
						
							| 201 | 200 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  𝑝  ∈  𝐵 ) | 
						
							| 202 |  | rpxr | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ* ) | 
						
							| 203 | 202 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  𝑟  ∈  ℝ* ) | 
						
							| 204 | 155 | blopn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  ∧  𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 205 | 199 201 203 204 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 206 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  𝑟  ∈  ℝ+ ) | 
						
							| 207 |  | blcntr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  ∧  𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ+ )  →  𝑝  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 208 | 199 201 206 207 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  𝑝  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 209 |  | blssm | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  ∧  𝑝  ∈  𝐵  ∧  𝑟  ∈  ℝ* )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝐵 ) | 
						
							| 210 | 199 201 203 209 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝐵 ) | 
						
							| 211 |  | simplrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  ∧  𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) | 
						
							| 212 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  𝜑 ) | 
						
							| 213 |  | rpgt0 | ⊢ ( 𝑟  ∈  ℝ+  →  0  <  𝑟 ) | 
						
							| 214 | 213 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  0  <  𝑟 ) | 
						
							| 215 | 212 201 203 214 96 | syl121anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  =  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 216 | 215 | eleq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ( 𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ↔  𝑤  ∈  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) | 
						
							| 217 | 216 | biimpa | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  ∧  𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  𝑤  ∈  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 218 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 219 | 218 | elixp | ⊢ ( 𝑤  ∈  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ↔  ( 𝑤  Fn  𝐼  ∧  ∀ 𝑘  ∈  𝐼 ( 𝑤 ‘ 𝑘 )  ∈  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) | 
						
							| 220 | 219 | simprbi | ⊢ ( 𝑤  ∈  X 𝑘  ∈  𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  →  ∀ 𝑘  ∈  𝐼 ( 𝑤 ‘ 𝑘 )  ∈  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 221 | 217 220 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  ∧  𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ∀ 𝑘  ∈  𝐼 ( 𝑤 ‘ 𝑘 )  ∈  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 222 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  ∧  𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  𝑘  ∈  𝐼 ) | 
						
							| 223 |  | rsp | ⊢ ( ∀ 𝑘  ∈  𝐼 ( 𝑤 ‘ 𝑘 )  ∈  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  →  ( 𝑘  ∈  𝐼  →  ( 𝑤 ‘ 𝑘 )  ∈  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) | 
						
							| 224 | 221 222 223 | sylc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  ∧  𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( 𝑤 ‘ 𝑘 )  ∈  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) | 
						
							| 225 | 211 224 | sseldd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  ∧  𝑤  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) )  →  ( 𝑤 ‘ 𝑘 )  ∈  𝑢 ) | 
						
							| 226 | 210 225 | ssrabdv | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  { 𝑤  ∈  𝐵  ∣  ( 𝑤 ‘ 𝑘 )  ∈  𝑢 } ) | 
						
							| 227 | 226 188 | sseqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 228 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  →  ( 𝑝  ∈  𝑦  ↔  𝑝  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 229 |  | sseq1 | ⊢ ( 𝑦  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  →  ( 𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ↔  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 230 | 228 229 | anbi12d | ⊢ ( 𝑦  =  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  →  ( ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ↔  ( 𝑝  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 231 | 230 | rspcev | ⊢ ( ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ∈  ( MetOpen ‘ 𝐷 )  ∧  ( 𝑝  ∈  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ∧  ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  →  ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 232 | 205 208 227 231 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 )  ⊆  𝑢 ) )  →  ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 233 | 198 232 | rexlimddv | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 ) ) )  →  ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 234 | 233 | expr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( ( 𝑝  ∈  𝐵  ∧  ( 𝑝 ‘ 𝑘 )  ∈  𝑢 )  →  ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 235 | 189 234 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( 𝑝  ∈  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  →  ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 236 | 235 | ralrimiv | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ∀ 𝑝  ∈  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 237 | 157 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( MetOpen ‘ 𝐷 )  ∈  Top ) | 
						
							| 238 |  | eltop2 | ⊢ ( ( MetOpen ‘ 𝐷 )  ∈  Top  →  ( ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 )  ↔  ∀ 𝑝  ∈  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 239 | 237 238 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 )  ↔  ∀ 𝑝  ∈  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ∃ 𝑦  ∈  ( MetOpen ‘ 𝐷 ) ( 𝑝  ∈  𝑦  ∧  𝑦  ⊆  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 240 | 236 239 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( ◡ ( 𝑤  ∈  𝐵  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 241 | 184 240 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑢  ∈  𝐾 )  →  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 242 | 241 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∀ 𝑢  ∈  𝐾 ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 243 | 242 159 | raleqtrrdv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 244 | 243 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐼 ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 245 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 )  =  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ) | 
						
							| 246 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑤 ‘ 𝑘 )  =  ( 𝑤 ‘ 𝑚 ) ) | 
						
							| 247 | 246 | mpteq2dv | ⊢ ( 𝑘  =  𝑚  →  ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) ) ) | 
						
							| 248 | 247 | cnveqd | ⊢ ( 𝑘  =  𝑚  →  ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) ) ) | 
						
							| 249 | 248 | imaeq1d | ⊢ ( 𝑘  =  𝑚  →  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) | 
						
							| 250 | 249 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 )  ↔  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 251 | 245 250 | raleqbidv | ⊢ ( 𝑘  =  𝑚  →  ( ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 )  ↔  ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 252 | 251 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  𝐼 ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 )  ↔  ∀ 𝑚  ∈  𝐼 ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 253 | 244 252 | sylib | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝐼 ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 254 |  | eqid | ⊢ ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) )  =  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) | 
						
							| 255 | 254 | fmpox | ⊢ ( ∀ 𝑚  ∈  𝐼 ∀ 𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 )  ∈  ( MetOpen ‘ 𝐷 )  ↔  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) : ∪  𝑚  ∈  𝐼 ( { 𝑚 }  ×  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ) ⟶ ( MetOpen ‘ 𝐷 ) ) | 
						
							| 256 | 253 255 | sylib | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) : ∪  𝑚  ∈  𝐼 ( { 𝑚 }  ×  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 ) ) ⟶ ( MetOpen ‘ 𝐷 ) ) | 
						
							| 257 | 256 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) )  ⊆  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 258 | 180 257 | unssd | ⊢ ( 𝜑  →  ( { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ∪  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) )  ⊆  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 259 |  | fiss | ⊢ ( ( ( MetOpen ‘ 𝐷 )  ∈  Top  ∧  ( { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ∪  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) )  ⊆  ( MetOpen ‘ 𝐷 ) )  →  ( fi ‘ ( { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ∪  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) ) )  ⊆  ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 260 | 157 258 259 | syl2anc | ⊢ ( 𝜑  →  ( fi ‘ ( { X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 ) }  ∪  ran  ( 𝑚  ∈  𝐼 ,  𝑢  ∈  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑚 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐼 ∪  ( ( TopOpen  ∘  𝑅 ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑚 ) )  “  𝑢 ) ) ) )  ⊆  ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 261 | 154 260 | eqsstrd | ⊢ ( 𝜑  →  𝐶  ⊆  ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) | 
						
							| 262 |  | fitop | ⊢ ( ( MetOpen ‘ 𝐷 )  ∈  Top  →  ( fi ‘ ( MetOpen ‘ 𝐷 ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 263 | 157 262 | syl | ⊢ ( 𝜑  →  ( fi ‘ ( MetOpen ‘ 𝐷 ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 264 | 155 | mopnval | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  →  ( MetOpen ‘ 𝐷 )  =  ( topGen ‘ ran  ( ball ‘ 𝐷 ) ) ) | 
						
							| 265 | 21 264 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  =  ( topGen ‘ ran  ( ball ‘ 𝐷 ) ) ) | 
						
							| 266 |  | tgdif0 | ⊢ ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) )  =  ( topGen ‘ ran  ( ball ‘ 𝐷 ) ) | 
						
							| 267 | 265 266 | eqtr4di | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  =  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) ) ) | 
						
							| 268 | 263 267 | eqtrd | ⊢ ( 𝜑  →  ( fi ‘ ( MetOpen ‘ 𝐷 ) )  =  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) ) ) | 
						
							| 269 | 261 268 | sseqtrd | ⊢ ( 𝜑  →  𝐶  ⊆  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) ) ) | 
						
							| 270 |  | 2basgen | ⊢ ( ( ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } )  ⊆  𝐶  ∧  𝐶  ⊆  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) ) )  →  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) )  =  ( topGen ‘ 𝐶 ) ) | 
						
							| 271 | 137 269 270 | syl2anc | ⊢ ( 𝜑  →  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) )  =  ( topGen ‘ 𝐶 ) ) | 
						
							| 272 | 19 271 | eqtr4d | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( topGen ‘ ( ran  ( ball ‘ 𝐷 )  ∖  { ∅ } ) ) ) | 
						
							| 273 | 1 2 3 13 7 | prdstopn | ⊢ ( 𝜑  →  𝐽  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) | 
						
							| 274 | 272 273 267 | 3eqtr4d | ⊢ ( 𝜑  →  𝐽  =  ( MetOpen ‘ 𝐷 ) ) |