Metamath Proof Explorer


Theorem precsex

Description: Every positive surreal has a reciprocal. Theorem 10(iv) of Conway p. 21. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Assertion precsex ( ( 𝐴 No ∧ 0s <s 𝐴 ) → ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 1s )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑧 = 𝑥𝑂 → ( 0s <s 𝑧 ↔ 0s <s 𝑥𝑂 ) )
2 oveq1 ( 𝑧 = 𝑥𝑂 → ( 𝑧 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦 ) )
3 2 eqeq1d ( 𝑧 = 𝑥𝑂 → ( ( 𝑧 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
4 3 rexbidv ( 𝑧 = 𝑥𝑂 → ( ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
5 1 4 imbi12d ( 𝑧 = 𝑥𝑂 → ( ( 0s <s 𝑧 → ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) )
6 breq2 ( 𝑧 = 𝐴 → ( 0s <s 𝑧 ↔ 0s <s 𝐴 ) )
7 oveq1 ( 𝑧 = 𝐴 → ( 𝑧 ·s 𝑦 ) = ( 𝐴 ·s 𝑦 ) )
8 7 eqeq1d ( 𝑧 = 𝐴 → ( ( 𝑧 ·s 𝑦 ) = 1s ↔ ( 𝐴 ·s 𝑦 ) = 1s ) )
9 8 rexbidv ( 𝑧 = 𝐴 → ( ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 1s ) )
10 6 9 imbi12d ( 𝑧 = 𝐴 → ( ( 0s <s 𝑧 → ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝐴 → ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 1s ) ) )
11 eqid rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) = rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
12 11 precsexlemcbv rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝑧 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝑧 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝑧 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝑧 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
13 eqid ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) = ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) )
14 eqid ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) = ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) )
15 simp1 ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → 𝑧 No )
16 simp2 ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → 0s <s 𝑧 )
17 simp3 ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
18 12 13 14 15 16 17 precsexlem10 ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) <<s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) )
19 18 scutcld ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) ∈ No )
20 eqid ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) = ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) )
21 12 13 14 15 16 17 20 precsexlem11 ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ( 𝑧 ·s ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) ) = 1s )
22 oveq2 ( 𝑦 = ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) → ( 𝑧 ·s 𝑦 ) = ( 𝑧 ·s ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) ) )
23 22 eqeq1d ( 𝑦 = ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) → ( ( 𝑧 ·s 𝑦 ) = 1s ↔ ( 𝑧 ·s ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) ) = 1s ) )
24 23 rspcev ( ( ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) ∈ No ∧ ( 𝑧 ·s ( ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) |s ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) ) “ ω ) ) ) = 1s ) → ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s )
25 19 21 24 syl2anc ( ( 𝑧 No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s )
26 25 3exp ( 𝑧 No → ( 0s <s 𝑧 → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) → ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s ) ) )
27 26 com23 ( 𝑧 No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) → ( 0s <s 𝑧 → ∃ 𝑦 No ( 𝑧 ·s 𝑦 ) = 1s ) ) )
28 5 10 27 noinds ( 𝐴 No → ( 0s <s 𝐴 → ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 1s ) )
29 28 imp ( ( 𝐴 No ∧ 0s <s 𝐴 ) → ∃ 𝑦 No ( 𝐴 ·s 𝑦 ) = 1s )