Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑧 = 𝑥𝑂 → ( 0s <s 𝑧 ↔ 0s <s 𝑥𝑂 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥𝑂 → ( 𝑧 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑧 = 𝑥𝑂 → ( ( 𝑧 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑧 = 𝑥𝑂 → ( ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
5 |
1 4
|
imbi12d |
⊢ ( 𝑧 = 𝑥𝑂 → ( ( 0s <s 𝑧 → ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) ) |
6 |
|
breq2 |
⊢ ( 𝑧 = 𝐴 → ( 0s <s 𝑧 ↔ 0s <s 𝐴 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ·s 𝑦 ) = ( 𝐴 ·s 𝑦 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ·s 𝑦 ) = 1s ↔ ( 𝐴 ·s 𝑦 ) = 1s ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 1s ) ) |
10 |
6 9
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 0s <s 𝑧 → ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝐴 → ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 1s ) ) ) |
11 |
|
eqid |
⊢ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) = rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
12 |
11
|
precsexlemcbv |
⊢ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝑧 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝑧 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝑧 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝑧 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
13 |
|
eqid |
⊢ ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) = ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) |
14 |
|
eqid |
⊢ ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) = ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) |
15 |
|
simp1 |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → 𝑧 ∈ No ) |
16 |
|
simp2 |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → 0s <s 𝑧 ) |
17 |
|
simp3 |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
18 |
12 13 14 15 16 17
|
precsexlem10 |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) <<s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) |
19 |
18
|
scutcld |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) ∈ No ) |
20 |
|
eqid |
⊢ ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) = ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) |
21 |
12 13 14 15 16 17 20
|
precsexlem11 |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ( 𝑧 ·s ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) ) = 1s ) |
22 |
|
oveq2 |
⊢ ( 𝑦 = ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) → ( 𝑧 ·s 𝑦 ) = ( 𝑧 ·s ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑦 = ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) → ( ( 𝑧 ·s 𝑦 ) = 1s ↔ ( 𝑧 ·s ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) ) = 1s ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) ∈ No ∧ ( 𝑧 ·s ( ∪ ( ( 1st ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) |s ∪ ( ( 2nd ∘ rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑢 ∈ ( L ‘ 𝑧 ) ∣ 0s <s 𝑢 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝑧 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝑧 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) “ ω ) ) ) = 1s ) → ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ) |
25 |
19 21 24
|
syl2anc |
⊢ ( ( 𝑧 ∈ No ∧ 0s <s 𝑧 ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) → ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ) |
26 |
25
|
3exp |
⊢ ( 𝑧 ∈ No → ( 0s <s 𝑧 → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) → ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ) ) ) |
27 |
26
|
com23 |
⊢ ( 𝑧 ∈ No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) → ( 0s <s 𝑧 → ∃ 𝑦 ∈ No ( 𝑧 ·s 𝑦 ) = 1s ) ) ) |
28 |
5 10 27
|
noinds |
⊢ ( 𝐴 ∈ No → ( 0s <s 𝐴 → ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 1s ) ) |
29 |
28
|
imp |
⊢ ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) → ∃ 𝑦 ∈ No ( 𝐴 ·s 𝑦 ) = 1s ) |