Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
7 |
|
fo1st |
⊢ 1st : V –onto→ V |
8 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
9 |
7 8
|
ax-mp |
⊢ Fun 1st |
10 |
|
rdgfun |
⊢ Fun rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
11 |
1
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) |
12 |
10 11
|
mpbir |
⊢ Fun 𝐹 |
13 |
|
funco |
⊢ ( ( Fun 1st ∧ Fun 𝐹 ) → Fun ( 1st ∘ 𝐹 ) ) |
14 |
9 12 13
|
mp2an |
⊢ Fun ( 1st ∘ 𝐹 ) |
15 |
2
|
funeqi |
⊢ ( Fun 𝐿 ↔ Fun ( 1st ∘ 𝐹 ) ) |
16 |
14 15
|
mpbir |
⊢ Fun 𝐿 |
17 |
|
dcomex |
⊢ ω ∈ V |
18 |
17
|
funimaex |
⊢ ( Fun 𝐿 → ( 𝐿 “ ω ) ∈ V ) |
19 |
16 18
|
ax-mp |
⊢ ( 𝐿 “ ω ) ∈ V |
20 |
19
|
uniex |
⊢ ∪ ( 𝐿 “ ω ) ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) ∈ V ) |
22 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
23 |
|
fofun |
⊢ ( 2nd : V –onto→ V → Fun 2nd ) |
24 |
22 23
|
ax-mp |
⊢ Fun 2nd |
25 |
|
funco |
⊢ ( ( Fun 2nd ∧ Fun 𝐹 ) → Fun ( 2nd ∘ 𝐹 ) ) |
26 |
24 12 25
|
mp2an |
⊢ Fun ( 2nd ∘ 𝐹 ) |
27 |
3
|
funeqi |
⊢ ( Fun 𝑅 ↔ Fun ( 2nd ∘ 𝐹 ) ) |
28 |
26 27
|
mpbir |
⊢ Fun 𝑅 |
29 |
17
|
funimaex |
⊢ ( Fun 𝑅 → ( 𝑅 “ ω ) ∈ V ) |
30 |
28 29
|
ax-mp |
⊢ ( 𝑅 “ ω ) ∈ V |
31 |
30
|
uniex |
⊢ ∪ ( 𝑅 “ ω ) ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → ∪ ( 𝑅 “ ω ) ∈ V ) |
33 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) = ∪ ( 𝐿 “ ω ) ) |
34 |
16 33
|
ax-mp |
⊢ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) = ∪ ( 𝐿 “ ω ) |
35 |
1 2 3 4 5 6
|
precsexlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) |
36 |
35
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( 𝐿 ‘ 𝑖 ) ⊆ No ) |
37 |
36
|
iunssd |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ⊆ No ) |
38 |
34 37
|
eqsstrrid |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) ⊆ No ) |
39 |
|
funiunfv |
⊢ ( Fun 𝑅 → ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) = ∪ ( 𝑅 “ ω ) ) |
40 |
28 39
|
ax-mp |
⊢ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) = ∪ ( 𝑅 “ ω ) |
41 |
35
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( 𝑅 ‘ 𝑖 ) ⊆ No ) |
42 |
41
|
iunssd |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) ⊆ No ) |
43 |
40 42
|
eqsstrrid |
⊢ ( 𝜑 → ∪ ( 𝑅 “ ω ) ⊆ No ) |
44 |
34
|
eleq2i |
⊢ ( 𝑏 ∈ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ↔ 𝑏 ∈ ∪ ( 𝐿 “ ω ) ) |
45 |
|
eliun |
⊢ ( 𝑏 ∈ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ) |
46 |
44 45
|
bitr3i |
⊢ ( 𝑏 ∈ ∪ ( 𝐿 “ ω ) ↔ ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ) |
47 |
|
funiunfv |
⊢ ( Fun 𝑅 → ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) = ∪ ( 𝑅 “ ω ) ) |
48 |
28 47
|
ax-mp |
⊢ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) = ∪ ( 𝑅 “ ω ) |
49 |
48
|
eleq2i |
⊢ ( 𝑐 ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ 𝑐 ∈ ∪ ( 𝑅 “ ω ) ) |
50 |
|
eliun |
⊢ ( 𝑐 ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) |
51 |
49 50
|
bitr3i |
⊢ ( 𝑐 ∈ ∪ ( 𝑅 “ ω ) ↔ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) |
52 |
46 51
|
anbi12i |
⊢ ( ( 𝑏 ∈ ∪ ( 𝐿 “ ω ) ∧ 𝑐 ∈ ∪ ( 𝑅 “ ω ) ) ↔ ( ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
53 |
|
reeanv |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ∧ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) ↔ ( ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
54 |
52 53
|
bitr4i |
⊢ ( ( 𝑏 ∈ ∪ ( 𝐿 “ ω ) ∧ 𝑐 ∈ ∪ ( 𝑅 “ ω ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ∧ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
55 |
|
omun |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∪ 𝑗 ) ∈ ω ) |
56 |
|
ssun1 |
⊢ 𝑖 ⊆ ( 𝑖 ∪ 𝑗 ) |
57 |
1 2 3
|
precsexlem6 |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ∧ 𝑖 ⊆ ( 𝑖 ∪ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
58 |
56 57
|
mp3an3 |
⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( 𝐿 ‘ 𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
59 |
55 58
|
syldan |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐿 ‘ 𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝐿 ‘ 𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
61 |
60
|
sseld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) → 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) |
62 |
|
simpr |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → 𝑗 ∈ ω ) |
63 |
|
ssun2 |
⊢ 𝑗 ⊆ ( 𝑖 ∪ 𝑗 ) |
64 |
1 2 3
|
precsexlem7 |
⊢ ( ( 𝑗 ∈ ω ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ∧ 𝑗 ⊆ ( 𝑖 ∪ 𝑗 ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
65 |
63 64
|
mp3an3 |
⊢ ( ( 𝑗 ∈ ω ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( 𝑅 ‘ 𝑗 ) ⊆ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
66 |
62 55 65
|
syl2anc |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑅 ‘ 𝑗 ) ⊆ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) |
67 |
66
|
sseld |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) → 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) → 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) |
69 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → 𝐴 ∈ No ) |
70 |
1 2 3 4 5 6
|
precsexlem8 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ⊆ No ∧ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ⊆ No ) ) |
71 |
70
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ⊆ No ) |
72 |
71
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ) → 𝑏 ∈ No ) |
73 |
72
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → 𝑏 ∈ No ) |
74 |
69 73
|
mulscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → ( 𝐴 ·s 𝑏 ) ∈ No ) |
75 |
70
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ⊆ No ) |
76 |
75
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) → 𝑐 ∈ No ) |
77 |
76
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → 𝑐 ∈ No ) |
78 |
69 77
|
mulscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → ( 𝐴 ·s 𝑐 ) ∈ No ) |
79 |
74 78
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → ( ( 𝐴 ·s 𝑏 ) ∈ No ∧ ( 𝐴 ·s 𝑐 ) ∈ No ) ) |
80 |
1 2 3 4 5 6
|
precsexlem9 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
81 |
80
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ∀ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ( 𝐴 ·s 𝑏 ) <s 1s ) |
82 |
|
rsp |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ( 𝐴 ·s 𝑏 ) <s 1s → ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) → ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) → ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
84 |
80
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ∀ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) 1s <s ( 𝐴 ·s 𝑐 ) ) |
85 |
|
rsp |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) 1s <s ( 𝐴 ·s 𝑐 ) → ( 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
87 |
83 86
|
anim12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) → ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
88 |
87
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
89 |
|
1sno |
⊢ 1s ∈ No |
90 |
|
slttr |
⊢ ( ( ( 𝐴 ·s 𝑏 ) ∈ No ∧ 1s ∈ No ∧ ( 𝐴 ·s 𝑐 ) ∈ No ) → ( ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) → ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) ) |
91 |
89 90
|
mp3an2 |
⊢ ( ( ( 𝐴 ·s 𝑏 ) ∈ No ∧ ( 𝐴 ·s 𝑐 ) ∈ No ) → ( ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) → ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) ) |
92 |
79 88 91
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) |
93 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → 0s <s 𝐴 ) |
94 |
73 77 69 93
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → ( 𝑏 <s 𝑐 ↔ ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) ) |
95 |
92 94
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) ) → 𝑏 <s 𝑐 ) |
96 |
95
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∪ 𝑗 ) ∈ ω ) → ( ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) → 𝑏 <s 𝑐 ) ) |
97 |
55 96
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖 ∪ 𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖 ∪ 𝑗 ) ) ) → 𝑏 <s 𝑐 ) ) |
98 |
61 68 97
|
syl2and |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ∧ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) → 𝑏 <s 𝑐 ) ) |
99 |
98
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ∧ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) ) → 𝑏 <s 𝑐 ) ) |
100 |
54 99
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑏 ∈ ∪ ( 𝐿 “ ω ) ∧ 𝑐 ∈ ∪ ( 𝑅 “ ω ) ) → 𝑏 <s 𝑐 ) ) |
101 |
100
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ∪ ( 𝐿 “ ω ) ∧ 𝑐 ∈ ∪ ( 𝑅 “ ω ) ) → 𝑏 <s 𝑐 ) |
102 |
21 32 38 43 101
|
ssltd |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) ) |