Metamath Proof Explorer


Theorem precsexlem10

Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
precsexlem.2 𝐿 = ( 1st𝐹 )
precsexlem.3 𝑅 = ( 2nd𝐹 )
precsexlem.4 ( 𝜑𝐴 No )
precsexlem.5 ( 𝜑 → 0s <s 𝐴 )
precsexlem.6 ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
Assertion precsexlem10 ( 𝜑 ( 𝐿 “ ω ) <<s ( 𝑅 “ ω ) )

Proof

Step Hyp Ref Expression
1 precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
2 precsexlem.2 𝐿 = ( 1st𝐹 )
3 precsexlem.3 𝑅 = ( 2nd𝐹 )
4 precsexlem.4 ( 𝜑𝐴 No )
5 precsexlem.5 ( 𝜑 → 0s <s 𝐴 )
6 precsexlem.6 ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
7 fo1st 1st : V –onto→ V
8 fofun ( 1st : V –onto→ V → Fun 1st )
9 7 8 ax-mp Fun 1st
10 rdgfun Fun rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
11 1 funeqi ( Fun 𝐹 ↔ Fun rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) )
12 10 11 mpbir Fun 𝐹
13 funco ( ( Fun 1st ∧ Fun 𝐹 ) → Fun ( 1st𝐹 ) )
14 9 12 13 mp2an Fun ( 1st𝐹 )
15 2 funeqi ( Fun 𝐿 ↔ Fun ( 1st𝐹 ) )
16 14 15 mpbir Fun 𝐿
17 dcomex ω ∈ V
18 17 funimaex ( Fun 𝐿 → ( 𝐿 “ ω ) ∈ V )
19 16 18 ax-mp ( 𝐿 “ ω ) ∈ V
20 19 uniex ( 𝐿 “ ω ) ∈ V
21 20 a1i ( 𝜑 ( 𝐿 “ ω ) ∈ V )
22 fo2nd 2nd : V –onto→ V
23 fofun ( 2nd : V –onto→ V → Fun 2nd )
24 22 23 ax-mp Fun 2nd
25 funco ( ( Fun 2nd ∧ Fun 𝐹 ) → Fun ( 2nd𝐹 ) )
26 24 12 25 mp2an Fun ( 2nd𝐹 )
27 3 funeqi ( Fun 𝑅 ↔ Fun ( 2nd𝐹 ) )
28 26 27 mpbir Fun 𝑅
29 17 funimaex ( Fun 𝑅 → ( 𝑅 “ ω ) ∈ V )
30 28 29 ax-mp ( 𝑅 “ ω ) ∈ V
31 30 uniex ( 𝑅 “ ω ) ∈ V
32 31 a1i ( 𝜑 ( 𝑅 “ ω ) ∈ V )
33 funiunfv ( Fun 𝐿 𝑖 ∈ ω ( 𝐿𝑖 ) = ( 𝐿 “ ω ) )
34 16 33 ax-mp 𝑖 ∈ ω ( 𝐿𝑖 ) = ( 𝐿 “ ω )
35 1 2 3 4 5 6 precsexlem8 ( ( 𝜑𝑖 ∈ ω ) → ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) )
36 35 simpld ( ( 𝜑𝑖 ∈ ω ) → ( 𝐿𝑖 ) ⊆ No )
37 36 iunssd ( 𝜑 𝑖 ∈ ω ( 𝐿𝑖 ) ⊆ No )
38 34 37 eqsstrrid ( 𝜑 ( 𝐿 “ ω ) ⊆ No )
39 funiunfv ( Fun 𝑅 𝑖 ∈ ω ( 𝑅𝑖 ) = ( 𝑅 “ ω ) )
40 28 39 ax-mp 𝑖 ∈ ω ( 𝑅𝑖 ) = ( 𝑅 “ ω )
41 35 simprd ( ( 𝜑𝑖 ∈ ω ) → ( 𝑅𝑖 ) ⊆ No )
42 41 iunssd ( 𝜑 𝑖 ∈ ω ( 𝑅𝑖 ) ⊆ No )
43 40 42 eqsstrrid ( 𝜑 ( 𝑅 “ ω ) ⊆ No )
44 34 eleq2i ( 𝑏 𝑖 ∈ ω ( 𝐿𝑖 ) ↔ 𝑏 ( 𝐿 “ ω ) )
45 eliun ( 𝑏 𝑖 ∈ ω ( 𝐿𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿𝑖 ) )
46 44 45 bitr3i ( 𝑏 ( 𝐿 “ ω ) ↔ ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿𝑖 ) )
47 funiunfv ( Fun 𝑅 𝑗 ∈ ω ( 𝑅𝑗 ) = ( 𝑅 “ ω ) )
48 28 47 ax-mp 𝑗 ∈ ω ( 𝑅𝑗 ) = ( 𝑅 “ ω )
49 48 eleq2i ( 𝑐 𝑗 ∈ ω ( 𝑅𝑗 ) ↔ 𝑐 ( 𝑅 “ ω ) )
50 eliun ( 𝑐 𝑗 ∈ ω ( 𝑅𝑗 ) ↔ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅𝑗 ) )
51 49 50 bitr3i ( 𝑐 ( 𝑅 “ ω ) ↔ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅𝑗 ) )
52 46 51 anbi12i ( ( 𝑏 ( 𝐿 “ ω ) ∧ 𝑐 ( 𝑅 “ ω ) ) ↔ ( ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅𝑗 ) ) )
53 reeanv ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑏 ∈ ( 𝐿𝑖 ) ∧ 𝑐 ∈ ( 𝑅𝑗 ) ) ↔ ( ∃ 𝑖 ∈ ω 𝑏 ∈ ( 𝐿𝑖 ) ∧ ∃ 𝑗 ∈ ω 𝑐 ∈ ( 𝑅𝑗 ) ) )
54 52 53 bitr4i ( ( 𝑏 ( 𝐿 “ ω ) ∧ 𝑐 ( 𝑅 “ ω ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑏 ∈ ( 𝐿𝑖 ) ∧ 𝑐 ∈ ( 𝑅𝑗 ) ) )
55 omun ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖𝑗 ) ∈ ω )
56 ssun1 𝑖 ⊆ ( 𝑖𝑗 )
57 1 2 3 precsexlem6 ( ( 𝑖 ∈ ω ∧ ( 𝑖𝑗 ) ∈ ω ∧ 𝑖 ⊆ ( 𝑖𝑗 ) ) → ( 𝐿𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖𝑗 ) ) )
58 56 57 mp3an3 ( ( 𝑖 ∈ ω ∧ ( 𝑖𝑗 ) ∈ ω ) → ( 𝐿𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖𝑗 ) ) )
59 55 58 syldan ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐿𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖𝑗 ) ) )
60 59 adantl ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝐿𝑖 ) ⊆ ( 𝐿 ‘ ( 𝑖𝑗 ) ) )
61 60 sseld ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑏 ∈ ( 𝐿𝑖 ) → 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ) )
62 simpr ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → 𝑗 ∈ ω )
63 ssun2 𝑗 ⊆ ( 𝑖𝑗 )
64 1 2 3 precsexlem7 ( ( 𝑗 ∈ ω ∧ ( 𝑖𝑗 ) ∈ ω ∧ 𝑗 ⊆ ( 𝑖𝑗 ) ) → ( 𝑅𝑗 ) ⊆ ( 𝑅 ‘ ( 𝑖𝑗 ) ) )
65 63 64 mp3an3 ( ( 𝑗 ∈ ω ∧ ( 𝑖𝑗 ) ∈ ω ) → ( 𝑅𝑗 ) ⊆ ( 𝑅 ‘ ( 𝑖𝑗 ) ) )
66 62 55 65 syl2anc ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑅𝑗 ) ⊆ ( 𝑅 ‘ ( 𝑖𝑗 ) ) )
67 66 sseld ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑐 ∈ ( 𝑅𝑗 ) → 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) )
68 67 adantl ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑐 ∈ ( 𝑅𝑗 ) → 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) )
69 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → 𝐴 No )
70 1 2 3 4 5 6 precsexlem8 ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( ( 𝐿 ‘ ( 𝑖𝑗 ) ) ⊆ No ∧ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ⊆ No ) )
71 70 simpld ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( 𝐿 ‘ ( 𝑖𝑗 ) ) ⊆ No )
72 71 sselda ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ) → 𝑏 No )
73 72 adantrr ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → 𝑏 No )
74 69 73 mulscld ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → ( 𝐴 ·s 𝑏 ) ∈ No )
75 70 simprd ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( 𝑅 ‘ ( 𝑖𝑗 ) ) ⊆ No )
76 75 sselda ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) → 𝑐 No )
77 76 adantrl ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → 𝑐 No )
78 69 77 mulscld ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → ( 𝐴 ·s 𝑐 ) ∈ No )
79 74 78 jca ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → ( ( 𝐴 ·s 𝑏 ) ∈ No ∧ ( 𝐴 ·s 𝑐 ) ∈ No ) )
80 1 2 3 4 5 6 precsexlem9 ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) 1s <s ( 𝐴 ·s 𝑐 ) ) )
81 80 simpld ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ∀ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ( 𝐴 ·s 𝑏 ) <s 1s )
82 rsp ( ∀ 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ( 𝐴 ·s 𝑏 ) <s 1s → ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) → ( 𝐴 ·s 𝑏 ) <s 1s ) )
83 81 82 syl ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) → ( 𝐴 ·s 𝑏 ) <s 1s ) )
84 80 simprd ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ∀ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) 1s <s ( 𝐴 ·s 𝑐 ) )
85 rsp ( ∀ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) 1s <s ( 𝐴 ·s 𝑐 ) → ( 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑐 ) ) )
86 84 85 syl ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑐 ) ) )
87 83 86 anim12d ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) → ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) ) )
88 87 imp ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) )
89 1sno 1s No
90 slttr ( ( ( 𝐴 ·s 𝑏 ) ∈ No ∧ 1s No ∧ ( 𝐴 ·s 𝑐 ) ∈ No ) → ( ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) → ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) )
91 89 90 mp3an2 ( ( ( 𝐴 ·s 𝑏 ) ∈ No ∧ ( 𝐴 ·s 𝑐 ) ∈ No ) → ( ( ( 𝐴 ·s 𝑏 ) <s 1s ∧ 1s <s ( 𝐴 ·s 𝑐 ) ) → ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) )
92 79 88 91 sylc ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) )
93 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → 0s <s 𝐴 )
94 73 77 69 93 sltmul2d ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → ( 𝑏 <s 𝑐 ↔ ( 𝐴 ·s 𝑏 ) <s ( 𝐴 ·s 𝑐 ) ) )
95 92 94 mpbird ( ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) ∧ ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) ) → 𝑏 <s 𝑐 )
96 95 ex ( ( 𝜑 ∧ ( 𝑖𝑗 ) ∈ ω ) → ( ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) → 𝑏 <s 𝑐 ) )
97 55 96 sylan2 ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑏 ∈ ( 𝐿 ‘ ( 𝑖𝑗 ) ) ∧ 𝑐 ∈ ( 𝑅 ‘ ( 𝑖𝑗 ) ) ) → 𝑏 <s 𝑐 ) )
98 61 68 97 syl2and ( ( 𝜑 ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑏 ∈ ( 𝐿𝑖 ) ∧ 𝑐 ∈ ( 𝑅𝑗 ) ) → 𝑏 <s 𝑐 ) )
99 98 rexlimdvva ( 𝜑 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑏 ∈ ( 𝐿𝑖 ) ∧ 𝑐 ∈ ( 𝑅𝑗 ) ) → 𝑏 <s 𝑐 ) )
100 54 99 biimtrid ( 𝜑 → ( ( 𝑏 ( 𝐿 “ ω ) ∧ 𝑐 ( 𝑅 “ ω ) ) → 𝑏 <s 𝑐 ) )
101 100 3impib ( ( 𝜑𝑏 ( 𝐿 “ ω ) ∧ 𝑐 ( 𝑅 “ ω ) ) → 𝑏 <s 𝑐 )
102 21 32 38 43 101 ssltd ( 𝜑 ( 𝐿 “ ω ) <<s ( 𝑅 “ ω ) )