Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
7 |
|
precsexlem.7 |
⊢ 𝑌 = ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) |
8 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
9 |
4 5
|
0elleft |
⊢ ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) ) |
10 |
9
|
snssd |
⊢ ( 𝜑 → { 0s } ⊆ ( L ‘ 𝐴 ) ) |
11 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 ) ) |
13 |
10 12
|
unssd |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ ( L ‘ 𝐴 ) ) |
14 |
|
sssslt1 |
⊢ ( ( ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ∧ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ ( L ‘ 𝐴 ) ) → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) ) |
15 |
8 13 14
|
sylancr |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) ) |
16 |
1 2 3 4 5 6
|
precsexlem10 |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) ) |
17 |
4 5
|
cutpos |
⊢ ( 𝜑 → 𝐴 = ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |s ( R ‘ 𝐴 ) ) ) |
18 |
7
|
a1i |
⊢ ( 𝜑 → 𝑌 = ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ) |
19 |
15 16 17 18
|
mulsunif |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑌 ) = ( ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) ) |
20 |
|
0sno |
⊢ 0s ∈ No |
21 |
20
|
elexi |
⊢ 0s ∈ V |
22 |
21
|
snid |
⊢ 0s ∈ { 0s } |
23 |
|
elun1 |
⊢ ( 0s ∈ { 0s } → 0s ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
24 |
22 23
|
ax-mp |
⊢ 0s ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |
25 |
|
peano1 |
⊢ ∅ ∈ ω |
26 |
1 2 3
|
precsexlem1 |
⊢ ( 𝐿 ‘ ∅ ) = { 0s } |
27 |
22 26
|
eleqtrri |
⊢ 0s ∈ ( 𝐿 ‘ ∅ ) |
28 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( 𝐿 ‘ 𝑏 ) = ( 𝐿 ‘ ∅ ) ) |
29 |
28
|
eleq2d |
⊢ ( 𝑏 = ∅ → ( 0s ∈ ( 𝐿 ‘ 𝑏 ) ↔ 0s ∈ ( 𝐿 ‘ ∅ ) ) ) |
30 |
29
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ 0s ∈ ( 𝐿 ‘ ∅ ) ) → ∃ 𝑏 ∈ ω 0s ∈ ( 𝐿 ‘ 𝑏 ) ) |
31 |
25 27 30
|
mp2an |
⊢ ∃ 𝑏 ∈ ω 0s ∈ ( 𝐿 ‘ 𝑏 ) |
32 |
|
eliun |
⊢ ( 0s ∈ ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ ω 0s ∈ ( 𝐿 ‘ 𝑏 ) ) |
33 |
31 32
|
mpbir |
⊢ 0s ∈ ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) |
34 |
|
fo1st |
⊢ 1st : V –onto→ V |
35 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
36 |
34 35
|
ax-mp |
⊢ Fun 1st |
37 |
|
rdgfun |
⊢ Fun rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
38 |
1
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) |
39 |
37 38
|
mpbir |
⊢ Fun 𝐹 |
40 |
|
funco |
⊢ ( ( Fun 1st ∧ Fun 𝐹 ) → Fun ( 1st ∘ 𝐹 ) ) |
41 |
36 39 40
|
mp2an |
⊢ Fun ( 1st ∘ 𝐹 ) |
42 |
2
|
funeqi |
⊢ ( Fun 𝐿 ↔ Fun ( 1st ∘ 𝐹 ) ) |
43 |
41 42
|
mpbir |
⊢ Fun 𝐿 |
44 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) = ∪ ( 𝐿 “ ω ) ) |
45 |
43 44
|
ax-mp |
⊢ ∪ 𝑏 ∈ ω ( 𝐿 ‘ 𝑏 ) = ∪ ( 𝐿 “ ω ) |
46 |
33 45
|
eleqtri |
⊢ 0s ∈ ∪ ( 𝐿 “ ω ) |
47 |
|
addsrid |
⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) |
48 |
20 47
|
ax-mp |
⊢ ( 0s +s 0s ) = 0s |
49 |
|
muls01 |
⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) |
50 |
20 49
|
ax-mp |
⊢ ( 0s ·s 0s ) = 0s |
51 |
48 50
|
oveq12i |
⊢ ( ( 0s +s 0s ) -s ( 0s ·s 0s ) ) = ( 0s -s 0s ) |
52 |
|
subsid |
⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) |
53 |
20 52
|
ax-mp |
⊢ ( 0s -s 0s ) = 0s |
54 |
51 53
|
eqtr2i |
⊢ 0s = ( ( 0s +s 0s ) -s ( 0s ·s 0s ) ) |
55 |
16
|
scutcld |
⊢ ( 𝜑 → ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ No ) |
56 |
7 55
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
57 |
|
muls02 |
⊢ ( 𝑌 ∈ No → ( 0s ·s 𝑌 ) = 0s ) |
58 |
56 57
|
syl |
⊢ ( 𝜑 → ( 0s ·s 𝑌 ) = 0s ) |
59 |
|
muls01 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ·s 0s ) = 0s ) |
60 |
4 59
|
syl |
⊢ ( 𝜑 → ( 𝐴 ·s 0s ) = 0s ) |
61 |
58 60
|
oveq12d |
⊢ ( 𝜑 → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) = ( 0s +s 0s ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) = ( ( 0s +s 0s ) -s ( 0s ·s 0s ) ) ) |
63 |
54 62
|
eqtr4id |
⊢ ( 𝜑 → 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) |
64 |
|
oveq1 |
⊢ ( 𝑐 = 0s → ( 𝑐 ·s 𝑌 ) = ( 0s ·s 𝑌 ) ) |
65 |
64
|
oveq1d |
⊢ ( 𝑐 = 0s → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ) |
66 |
|
oveq1 |
⊢ ( 𝑐 = 0s → ( 𝑐 ·s 𝑑 ) = ( 0s ·s 𝑑 ) ) |
67 |
65 66
|
oveq12d |
⊢ ( 𝑐 = 0s → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) |
68 |
67
|
eqeq2d |
⊢ ( 𝑐 = 0s → ( 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) |
69 |
|
oveq2 |
⊢ ( 𝑑 = 0s → ( 𝐴 ·s 𝑑 ) = ( 𝐴 ·s 0s ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝑑 = 0s → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) ) |
71 |
|
oveq2 |
⊢ ( 𝑑 = 0s → ( 0s ·s 𝑑 ) = ( 0s ·s 0s ) ) |
72 |
70 71
|
oveq12d |
⊢ ( 𝑑 = 0s → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) |
73 |
72
|
eqeq2d |
⊢ ( 𝑑 = 0s → ( 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ↔ 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) ) |
74 |
68 73
|
rspc2ev |
⊢ ( ( 0s ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 0s ∈ ∪ ( 𝐿 “ ω ) ∧ 0s = ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 0s ) ) -s ( 0s ·s 0s ) ) ) → ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
75 |
24 46 63 74
|
mp3an12i |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
76 |
|
eqeq1 |
⊢ ( 𝑏 = 0s → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
77 |
76
|
2rexbidv |
⊢ ( 𝑏 = 0s → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
78 |
21 77
|
elab |
⊢ ( 0s ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 0s = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
79 |
75 78
|
sylibr |
⊢ ( 𝜑 → 0s ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) |
80 |
|
elun1 |
⊢ ( 0s ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } → 0s ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
81 |
79 80
|
syl |
⊢ ( 𝜑 → 0s ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
82 |
|
eqid |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
83 |
82
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
84 |
|
ssltex1 |
⊢ ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ) |
85 |
15 84
|
syl |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ) |
86 |
|
ssltex1 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝐿 “ ω ) ∈ V ) |
87 |
16 86
|
syl |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) ∈ V ) |
88 |
|
mpoexga |
⊢ ( ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ∧ ∪ ( 𝐿 “ ω ) ∈ V ) → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
89 |
85 87 88
|
syl2anc |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
90 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
91 |
89 90
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
92 |
83 91
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
93 |
|
eqid |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
94 |
93
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
95 |
|
fvex |
⊢ ( R ‘ 𝐴 ) ∈ V |
96 |
|
ssltex2 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝑅 “ ω ) ∈ V ) |
97 |
16 96
|
syl |
⊢ ( 𝜑 → ∪ ( 𝑅 “ ω ) ∈ V ) |
98 |
|
mpoexga |
⊢ ( ( ( R ‘ 𝐴 ) ∈ V ∧ ∪ ( 𝑅 “ ω ) ∈ V ) → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
99 |
95 97 98
|
sylancr |
⊢ ( 𝜑 → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
100 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
102 |
94 101
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
103 |
92 102
|
unexd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ∈ V ) |
104 |
|
snex |
⊢ { 1s } ∈ V |
105 |
104
|
a1i |
⊢ ( 𝜑 → { 1s } ∈ V ) |
106 |
|
ssltss1 |
⊢ ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) <<s ( R ‘ 𝐴 ) → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ No ) |
107 |
15 106
|
syl |
⊢ ( 𝜑 → ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ⊆ No ) |
108 |
107
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) → 𝑐 ∈ No ) |
109 |
108
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑐 ∈ No ) |
110 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ No ) |
111 |
109 110
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
112 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝐴 ∈ No ) |
113 |
|
ssltss1 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝐿 “ ω ) ⊆ No ) |
114 |
16 113
|
syl |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) ⊆ No ) |
115 |
114
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → 𝑑 ∈ No ) |
116 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑑 ∈ No ) |
117 |
112 116
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
118 |
111 117
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
119 |
109 116
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
120 |
118 119
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
121 |
|
eleq1 |
⊢ ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → ( 𝑏 ∈ No ↔ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) ) |
122 |
120 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
123 |
122
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
124 |
123
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
125 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
126 |
125
|
a1i |
⊢ ( 𝜑 → ( R ‘ 𝐴 ) ⊆ No ) |
127 |
126
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝑐 ∈ No ) |
128 |
127
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑐 ∈ No ) |
129 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ No ) |
130 |
128 129
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
131 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝐴 ∈ No ) |
132 |
|
ssltss2 |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ∪ ( 𝑅 “ ω ) ⊆ No ) |
133 |
16 132
|
syl |
⊢ ( 𝜑 → ∪ ( 𝑅 “ ω ) ⊆ No ) |
134 |
133
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 𝑑 ∈ No ) |
135 |
134
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑑 ∈ No ) |
136 |
131 135
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
137 |
130 136
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
138 |
128 135
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
139 |
137 138
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
140 |
139 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
141 |
140
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
142 |
141
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
143 |
124 142
|
unssd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ⊆ No ) |
144 |
|
1sno |
⊢ 1s ∈ No |
145 |
|
snssi |
⊢ ( 1s ∈ No → { 1s } ⊆ No ) |
146 |
144 145
|
mp1i |
⊢ ( 𝜑 → { 1s } ⊆ No ) |
147 |
|
elun |
⊢ ( 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
148 |
|
vex |
⊢ 𝑒 ∈ V |
149 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑒 → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
150 |
149
|
2rexbidv |
⊢ ( 𝑏 = 𝑒 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
151 |
148 150
|
elab |
⊢ ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
152 |
149
|
2rexbidv |
⊢ ( 𝑏 = 𝑒 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
153 |
148 152
|
elab |
⊢ ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
154 |
151 153
|
orbi12i |
⊢ ( ( 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑒 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
155 |
147 154
|
bitri |
⊢ ( 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
156 |
|
elun |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ↔ ( 𝑐 ∈ { 0s } ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
157 |
|
velsn |
⊢ ( 𝑐 ∈ { 0s } ↔ 𝑐 = 0s ) |
158 |
157
|
orbi1i |
⊢ ( ( 𝑐 ∈ { 0s } ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ↔ ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
159 |
156 158
|
bitri |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ↔ ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ) |
160 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 0s ·s 𝑌 ) = 0s ) |
161 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 0s +s ( 𝐴 ·s 𝑑 ) ) ) |
162 |
|
muls02 |
⊢ ( 𝑑 ∈ No → ( 0s ·s 𝑑 ) = 0s ) |
163 |
115 162
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 0s ·s 𝑑 ) = 0s ) |
164 |
161 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( ( 0s +s ( 𝐴 ·s 𝑑 ) ) -s 0s ) ) |
165 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → 𝐴 ∈ No ) |
166 |
165 115
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
167 |
|
addslid |
⊢ ( ( 𝐴 ·s 𝑑 ) ∈ No → ( 0s +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
168 |
166 167
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 0s +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
169 |
168
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( 0s +s ( 𝐴 ·s 𝑑 ) ) -s 0s ) = ( ( 𝐴 ·s 𝑑 ) -s 0s ) ) |
170 |
|
subsid1 |
⊢ ( ( 𝐴 ·s 𝑑 ) ∈ No → ( ( 𝐴 ·s 𝑑 ) -s 0s ) = ( 𝐴 ·s 𝑑 ) ) |
171 |
166 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( 𝐴 ·s 𝑑 ) -s 0s ) = ( 𝐴 ·s 𝑑 ) ) |
172 |
164 169 171
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
173 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) |
174 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) = ∪ ( 𝐿 “ ω ) ) |
175 |
43 174
|
ax-mp |
⊢ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) = ∪ ( 𝐿 “ ω ) |
176 |
175
|
eleq2i |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝐿 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) |
177 |
173 176
|
bitr3i |
⊢ ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) |
178 |
1 2 3 4 5 6
|
precsexlem9 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( ∀ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑑 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
179 |
178
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ∀ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑑 ) <s 1s ) |
180 |
|
rsp |
⊢ ( ∀ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑑 ) <s 1s → ( 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
181 |
179 180
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ω ) → ( 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
182 |
181
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
183 |
177 182
|
biimtrrid |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( 𝐴 ·s 𝑑 ) <s 1s ) ) |
184 |
183
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( 𝐴 ·s 𝑑 ) <s 1s ) |
185 |
172 184
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) |
186 |
185
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) ) |
187 |
67
|
breq1d |
⊢ ( 𝑐 = 0s → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) ) |
188 |
187
|
imbi2d |
⊢ ( 𝑐 = 0s → ( ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ↔ ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) <s 1s ) ) ) |
189 |
186 188
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑐 = 0s → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
190 |
|
scutcut |
⊢ ( ∪ ( 𝐿 “ ω ) <<s ∪ ( 𝑅 “ ω ) → ( ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ No ∧ ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ∧ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) ) |
191 |
16 190
|
syl |
⊢ ( 𝜑 → ( ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ No ∧ ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ∧ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) ) |
192 |
191
|
simp3d |
⊢ ( 𝜑 → { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) |
193 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) |
194 |
|
ovex |
⊢ ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ V |
195 |
194
|
snid |
⊢ ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } |
196 |
7 195
|
eqeltri |
⊢ 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } |
197 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
198 |
|
peano2 |
⊢ ( 𝑖 ∈ ω → suc 𝑖 ∈ ω ) |
199 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
200 |
|
eqid |
⊢ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) |
201 |
|
oveq1 |
⊢ ( 𝑥𝐿 = 𝑐 → ( 𝑥𝐿 -s 𝐴 ) = ( 𝑐 -s 𝐴 ) ) |
202 |
201
|
oveq1d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) |
203 |
202
|
oveq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) |
204 |
|
id |
⊢ ( 𝑥𝐿 = 𝑐 → 𝑥𝐿 = 𝑐 ) |
205 |
203 204
|
oveq12d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) |
206 |
205
|
eqeq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) ) |
207 |
|
oveq2 |
⊢ ( 𝑦𝐿 = 𝑑 → ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) |
208 |
207
|
oveq2d |
⊢ ( 𝑦𝐿 = 𝑑 → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
209 |
208
|
oveq1d |
⊢ ( 𝑦𝐿 = 𝑑 → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
210 |
209
|
eqeq2d |
⊢ ( 𝑦𝐿 = 𝑑 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
211 |
206 210
|
rspc2ev |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
212 |
200 211
|
mp3an3 |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
213 |
212
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
214 |
|
ovex |
⊢ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ V |
215 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
216 |
215
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
217 |
214 216
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
218 |
213 217
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ) |
219 |
|
elun1 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
220 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
221 |
218 219 220
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
222 |
1 2 3
|
precsexlem5 |
⊢ ( 𝑖 ∈ ω → ( 𝑅 ‘ suc 𝑖 ) = ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
223 |
222
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( 𝑅 ‘ suc 𝑖 ) = ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
224 |
221 223
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) |
225 |
|
fveq2 |
⊢ ( 𝑗 = suc 𝑖 → ( 𝑅 ‘ 𝑗 ) = ( 𝑅 ‘ suc 𝑖 ) ) |
226 |
225
|
eleq2d |
⊢ ( 𝑗 = suc 𝑖 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) ) |
227 |
226
|
rspcev |
⊢ ( ( suc 𝑖 ∈ ω ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
228 |
199 224 227
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
229 |
228
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
230 |
|
eliun |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
231 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
232 |
|
fofun |
⊢ ( 2nd : V –onto→ V → Fun 2nd ) |
233 |
231 232
|
ax-mp |
⊢ Fun 2nd |
234 |
|
funco |
⊢ ( ( Fun 2nd ∧ Fun 𝐹 ) → Fun ( 2nd ∘ 𝐹 ) ) |
235 |
233 39 234
|
mp2an |
⊢ Fun ( 2nd ∘ 𝐹 ) |
236 |
3
|
funeqi |
⊢ ( Fun 𝑅 ↔ Fun ( 2nd ∘ 𝐹 ) ) |
237 |
235 236
|
mpbir |
⊢ Fun 𝑅 |
238 |
|
funiunfv |
⊢ ( Fun 𝑅 → ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) = ∪ ( 𝑅 “ ω ) ) |
239 |
237 238
|
ax-mp |
⊢ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) = ∪ ( 𝑅 “ ω ) |
240 |
239
|
eleq2i |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
241 |
230 240
|
bitr3i |
⊢ ( ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
242 |
229 177 241
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) ) |
243 |
242
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
244 |
193 197 243
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
245 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ No ) |
246 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 1s ∈ No ) |
247 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
248 |
11 247
|
sstri |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ No |
249 |
248
|
sseli |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑐 ∈ No ) |
250 |
249
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑐 ∈ No ) |
251 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝐴 ∈ No ) |
252 |
250 251
|
subscld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
253 |
252
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
254 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑑 ∈ No ) |
255 |
253 254
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
256 |
246 255
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
257 |
249
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑐 ∈ No ) |
258 |
|
breq2 |
⊢ ( 𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐 ) ) |
259 |
258
|
elrab |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑐 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑐 ) ) |
260 |
259
|
simprbi |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑐 ) |
261 |
260
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 0s <s 𝑐 ) |
262 |
260
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s 𝑐 ) |
263 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐 ) ) |
264 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑐 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑐 ·s 𝑦 ) ) |
265 |
264
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑐 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑐 ·s 𝑦 ) = 1s ) ) |
266 |
265
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑐 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) |
267 |
263 266
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑐 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑐 → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) ) |
268 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
269 |
|
ssun1 |
⊢ ( L ‘ 𝐴 ) ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
270 |
11 269
|
sstri |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
271 |
270
|
sseli |
⊢ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
272 |
271
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
273 |
267 268 272
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 0s <s 𝑐 → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) |
274 |
262 273
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
275 |
274
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
276 |
245 256 257 261 275
|
sltmuldiv2wd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ↔ 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
277 |
244 276
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
278 |
257 254
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
279 |
166
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
280 |
246 278 279
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
281 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝐴 ∈ No ) |
282 |
257 281 254
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
283 |
282
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
284 |
280 283
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
285 |
277 284
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) |
286 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑌 ∈ No ) |
287 |
250 286
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
288 |
287
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
289 |
288 279
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
290 |
289 278 246
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ) ) |
291 |
246 278
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
292 |
288 279 291
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
293 |
290 292
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
294 |
285 293
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) |
295 |
294
|
exp32 |
⊢ ( 𝜑 → ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
296 |
189 295
|
jaod |
⊢ ( 𝜑 → ( ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
297 |
159 296
|
biimtrid |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) ) |
298 |
297
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) |
299 |
|
breq1 |
⊢ ( 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → ( 𝑒 <s 1s ↔ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) ) |
300 |
298 299
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
301 |
300
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
302 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } <<s ∪ ( 𝑅 “ ω ) ) |
303 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
304 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
305 |
|
oveq1 |
⊢ ( 𝑥𝑅 = 𝑐 → ( 𝑥𝑅 -s 𝐴 ) = ( 𝑐 -s 𝐴 ) ) |
306 |
305
|
oveq1d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) |
307 |
306
|
oveq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) |
308 |
|
id |
⊢ ( 𝑥𝑅 = 𝑐 → 𝑥𝑅 = 𝑐 ) |
309 |
307 308
|
oveq12d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) |
310 |
309
|
eqeq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) ) |
311 |
|
oveq2 |
⊢ ( 𝑦𝑅 = 𝑑 → ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) |
312 |
311
|
oveq2d |
⊢ ( 𝑦𝑅 = 𝑑 → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
313 |
312
|
oveq1d |
⊢ ( 𝑦𝑅 = 𝑑 → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
314 |
313
|
eqeq2d |
⊢ ( 𝑦𝑅 = 𝑑 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
315 |
310 314
|
rspc2ev |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
316 |
200 315
|
mp3an3 |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
317 |
316
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
318 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
319 |
318
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
320 |
214 319
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
321 |
317 320
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) |
322 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
323 |
321 322 220
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
324 |
222
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( 𝑅 ‘ suc 𝑖 ) = ( ( 𝑅 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
325 |
323 324
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ suc 𝑖 ) ) |
326 |
304 325 227
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) |
327 |
326
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝑅 ‘ 𝑗 ) ) ) |
328 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) |
329 |
|
funiunfv |
⊢ ( Fun 𝑅 → ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) = ∪ ( 𝑅 “ ω ) ) |
330 |
237 329
|
ax-mp |
⊢ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) = ∪ ( 𝑅 “ ω ) |
331 |
330
|
eleq2i |
⊢ ( 𝑑 ∈ ∪ 𝑖 ∈ ω ( 𝑅 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
332 |
328 331
|
bitr3i |
⊢ ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
333 |
327 332 241
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) ) |
334 |
333
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝑅 “ ω ) ) |
335 |
302 303 334
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) |
336 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s ∈ No ) |
337 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
338 |
127 337
|
subscld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
339 |
338
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
340 |
339 135
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
341 |
336 340
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
342 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 0s ∈ No ) |
343 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝐴 ) |
344 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑐 → ( 𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑐 ) ) |
345 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑥𝑂 } |
346 |
344 345
|
elrab2 |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑐 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑐 ) ) |
347 |
346
|
simprbi |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑐 ) |
348 |
347
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑐 ) |
349 |
342 337 127 343 348
|
slttrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝑐 ) |
350 |
349
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 0s <s 𝑐 ) |
351 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
352 |
|
elun2 |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
353 |
352
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → 𝑐 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
354 |
267 351 353
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 0s <s 𝑐 → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) ) |
355 |
349 354
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
356 |
355
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
357 |
129 341 128 350 356
|
sltmuldiv2wd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ↔ 𝑌 <s ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) ) |
358 |
335 357
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
359 |
336 138 136
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
360 |
128 131 135
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
361 |
360
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
362 |
359 361
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
363 |
358 362
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) |
364 |
137 138 336
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ) ) |
365 |
336 138
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
366 |
130 136 365
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) <s ( 1s +s ( 𝑐 ·s 𝑑 ) ) ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
367 |
364 366
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ↔ ( 𝑐 ·s 𝑌 ) <s ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
368 |
363 367
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) <s 1s ) |
369 |
368 299
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
370 |
369
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑒 <s 1s ) ) |
371 |
301 370
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑒 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) → 𝑒 <s 1s ) ) |
372 |
155 371
|
biimtrid |
⊢ ( 𝜑 → ( 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 1s ) ) |
373 |
372
|
imp |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) → 𝑒 <s 1s ) |
374 |
|
velsn |
⊢ ( 𝑓 ∈ { 1s } ↔ 𝑓 = 1s ) |
375 |
|
breq2 |
⊢ ( 𝑓 = 1s → ( 𝑒 <s 𝑓 ↔ 𝑒 <s 1s ) ) |
376 |
374 375
|
sylbi |
⊢ ( 𝑓 ∈ { 1s } → ( 𝑒 <s 𝑓 ↔ 𝑒 <s 1s ) ) |
377 |
373 376
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) → ( 𝑓 ∈ { 1s } → 𝑒 <s 𝑓 ) ) |
378 |
377
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ∧ 𝑓 ∈ { 1s } ) → 𝑒 <s 𝑓 ) |
379 |
103 105 143 146 378
|
ssltd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) <<s { 1s } ) |
380 |
|
eqid |
⊢ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
381 |
380
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
382 |
|
mpoexga |
⊢ ( ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∈ V ∧ ∪ ( 𝑅 “ ω ) ∈ V ) → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
383 |
85 97 382
|
syl2anc |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
384 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
385 |
383 384
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) , 𝑑 ∈ ∪ ( 𝑅 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
386 |
381 385
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
387 |
|
eqid |
⊢ ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
388 |
387
|
rnmpo |
⊢ ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) = { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } |
389 |
|
mpoexga |
⊢ ( ( ( R ‘ 𝐴 ) ∈ V ∧ ∪ ( 𝐿 “ ω ) ∈ V ) → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
390 |
95 87 389
|
sylancr |
⊢ ( 𝜑 → ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
391 |
|
rnexg |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
392 |
390 391
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( R ‘ 𝐴 ) , 𝑑 ∈ ∪ ( 𝐿 “ ω ) ↦ ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ∈ V ) |
393 |
388 392
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∈ V ) |
394 |
386 393
|
unexd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ∈ V ) |
395 |
108
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑐 ∈ No ) |
396 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ No ) |
397 |
395 396
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
398 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝐴 ∈ No ) |
399 |
134
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑑 ∈ No ) |
400 |
398 399
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
401 |
397 400
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
402 |
395 399
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
403 |
401 402
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
404 |
403 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
405 |
404
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
406 |
405
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
407 |
127
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑐 ∈ No ) |
408 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ No ) |
409 |
407 408
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
410 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝐴 ∈ No ) |
411 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑑 ∈ No ) |
412 |
410 411
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
413 |
409 412
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
414 |
407 411
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
415 |
413 414
|
subscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
416 |
415 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
417 |
416
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 𝑏 ∈ No ) ) |
418 |
417
|
abssdv |
⊢ ( 𝜑 → { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ⊆ No ) |
419 |
406 418
|
unssd |
⊢ ( 𝜑 → ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ⊆ No ) |
420 |
|
elun |
⊢ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
421 |
|
vex |
⊢ 𝑓 ∈ V |
422 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑓 → ( 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
423 |
422
|
2rexbidv |
⊢ ( 𝑏 = 𝑓 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
424 |
421 423
|
elab |
⊢ ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
425 |
422
|
2rexbidv |
⊢ ( 𝑏 = 𝑓 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
426 |
421 425
|
elab |
⊢ ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ↔ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
427 |
424 426
|
orbi12i |
⊢ ( ( 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∨ 𝑓 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
428 |
420 427
|
bitri |
⊢ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ↔ ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
429 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) ) |
430 |
239
|
eleq2i |
⊢ ( 𝑑 ∈ ∪ 𝑗 ∈ ω ( 𝑅 ‘ 𝑗 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
431 |
429 430
|
bitr3i |
⊢ ( ∃ 𝑗 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) ↔ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) |
432 |
1 2 3 4 5 6
|
precsexlem9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( ∀ 𝑐 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑐 ) <s 1s ∧ ∀ 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
433 |
|
rsp |
⊢ ( ∀ 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑑 ) → ( 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
434 |
432 433
|
simpl2im |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
435 |
434
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
436 |
431 435
|
biimtrrid |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( 𝐴 ·s 𝑑 ) ) ) |
437 |
436
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 1s <s ( 𝐴 ·s 𝑑 ) ) |
438 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 𝑌 ∈ No ) |
439 |
57
|
oveq1d |
⊢ ( 𝑌 ∈ No → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 0s +s ( 𝐴 ·s 𝑑 ) ) ) |
440 |
438 439
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 0s +s ( 𝐴 ·s 𝑑 ) ) ) |
441 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 𝐴 ∈ No ) |
442 |
441 134
|
mulscld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
443 |
442 167
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( 0s +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
444 |
440 443
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
445 |
134 162
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( 0s ·s 𝑑 ) = 0s ) |
446 |
444 445
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( ( 𝐴 ·s 𝑑 ) -s 0s ) ) |
447 |
442 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( 𝐴 ·s 𝑑 ) -s 0s ) = ( 𝐴 ·s 𝑑 ) ) |
448 |
446 447
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) = ( 𝐴 ·s 𝑑 ) ) |
449 |
437 448
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) → 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) |
450 |
449
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) |
451 |
67
|
breq2d |
⊢ ( 𝑐 = 0s → ( 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ↔ 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) |
452 |
451
|
imbi2d |
⊢ ( 𝑐 = 0s → ( ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ↔ ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 0s ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 0s ·s 𝑑 ) ) ) ) ) |
453 |
450 452
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑐 = 0s → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
454 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s ∈ No ) |
455 |
249
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑐 ∈ No ) |
456 |
134
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑑 ∈ No ) |
457 |
455 456
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑑 ) ∈ No ) |
458 |
442
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝐴 ·s 𝑑 ) ∈ No ) |
459 |
454 457 458
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
460 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝐴 ∈ No ) |
461 |
455 460 456
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
462 |
461
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
463 |
459 462
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
464 |
191
|
simp2d |
⊢ ( 𝜑 → ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
465 |
464
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
466 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
467 |
201
|
oveq1d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) |
468 |
467
|
oveq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) |
469 |
468 204
|
oveq12d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) |
470 |
469
|
eqeq2d |
⊢ ( 𝑥𝐿 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑐 ) ) ) |
471 |
470 314
|
rspc2ev |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
472 |
200 471
|
mp3an3 |
⊢ ( ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
473 |
472
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
474 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
475 |
474
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
476 |
214 475
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
477 |
473 476
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) |
478 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
479 |
|
elun2 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
480 |
477 478 479
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
481 |
1 2 3
|
precsexlem4 |
⊢ ( 𝑖 ∈ ω → ( 𝐿 ‘ suc 𝑖 ) = ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
482 |
481
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( 𝐿 ‘ suc 𝑖 ) = ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
483 |
480 482
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) |
484 |
|
fveq2 |
⊢ ( 𝑗 = suc 𝑖 → ( 𝐿 ‘ 𝑗 ) = ( 𝐿 ‘ suc 𝑖 ) ) |
485 |
484
|
eleq2d |
⊢ ( 𝑗 = suc 𝑖 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) ) |
486 |
485
|
rspcev |
⊢ ( ( suc 𝑖 ∈ ω ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
487 |
466 483 486
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
488 |
487
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝑅 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) ) |
489 |
|
eliun |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
490 |
|
funiunfv |
⊢ ( Fun 𝐿 → ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) = ∪ ( 𝐿 “ ω ) ) |
491 |
43 490
|
ax-mp |
⊢ ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) = ∪ ( 𝐿 “ ω ) |
492 |
491
|
eleq2i |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ 𝑗 ∈ ω ( 𝐿 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
493 |
489 492
|
bitr3i |
⊢ ( ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
494 |
488 332 493
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) ) |
495 |
494
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
496 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
497 |
465 495 496
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ) |
498 |
252
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
499 |
498 456
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
500 |
454 499
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
501 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 𝑌 ∈ No ) |
502 |
260
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 0s <s 𝑐 ) |
503 |
274
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
504 |
500 501 455 502 503
|
sltdivmulwd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ↔ ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) ) |
505 |
497 504
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
506 |
463 505
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
507 |
454 457
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
508 |
287
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑐 ·s 𝑌 ) ∈ No ) |
509 |
507 458 508
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ) ) |
510 |
508 458
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ∈ No ) |
511 |
454 457 510
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
512 |
509 511
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
513 |
506 512
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
514 |
513
|
exp32 |
⊢ ( 𝜑 → ( 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
515 |
453 514
|
jaod |
⊢ ( 𝜑 → ( ( 𝑐 = 0s ∨ 𝑐 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
516 |
159 515
|
biimtrid |
⊢ ( 𝜑 → ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑑 ∈ ∪ ( 𝑅 “ ω ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) ) |
517 |
516
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
518 |
|
breq2 |
⊢ ( 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → ( 1s <s 𝑓 ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
519 |
517 518
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∧ 𝑑 ∈ ∪ ( 𝑅 “ ω ) ) ) → ( 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
520 |
519
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
521 |
144
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 1s ∈ No ) |
522 |
521 414 412
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
523 |
407 410 411
|
subsdird |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) = ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) |
524 |
523
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 ·s 𝑑 ) -s ( 𝐴 ·s 𝑑 ) ) ) ) |
525 |
522 524
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ) |
526 |
464
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ∪ ( 𝐿 “ ω ) <<s { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
527 |
198
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → suc 𝑖 ∈ ω ) |
528 |
305
|
oveq1d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) |
529 |
528
|
oveq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) |
530 |
529 308
|
oveq12d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) |
531 |
530
|
eqeq2d |
⊢ ( 𝑥𝑅 = 𝑐 → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑐 ) ) ) |
532 |
531 210
|
rspc2ev |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ∧ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
533 |
200 532
|
mp3an3 |
⊢ ( ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
534 |
533
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
535 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
536 |
535
|
2rexbidv |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
537 |
214 536
|
elab |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
538 |
534 537
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ) |
539 |
|
elun1 |
⊢ ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
540 |
538 539 479
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
541 |
481
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( 𝐿 ‘ suc 𝑖 ) = ( ( 𝐿 ‘ 𝑖 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑖 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
542 |
540 541
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ suc 𝑖 ) ) |
543 |
527 542 486
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) ∧ ( 𝑖 ∈ ω ∧ 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) ) ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) |
544 |
543
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑖 ∈ ω 𝑑 ∈ ( 𝐿 ‘ 𝑖 ) → ∃ 𝑗 ∈ ω ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ( 𝐿 ‘ 𝑗 ) ) ) |
545 |
544 177 493
|
3imtr3g |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( R ‘ 𝐴 ) ) → ( 𝑑 ∈ ∪ ( 𝐿 “ ω ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) ) |
546 |
545
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) ∈ ∪ ( 𝐿 “ ω ) ) |
547 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 𝑌 ∈ { ( ∪ ( 𝐿 “ ω ) |s ∪ ( 𝑅 “ ω ) ) } ) |
548 |
526 546 547
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ) |
549 |
338
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑐 -s 𝐴 ) ∈ No ) |
550 |
549 411
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ∈ No ) |
551 |
521 550
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) ∈ No ) |
552 |
349
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 0s <s 𝑐 ) |
553 |
355
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ∃ 𝑦 ∈ No ( 𝑐 ·s 𝑦 ) = 1s ) |
554 |
551 408 407 552 553
|
sltdivmulwd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) /su 𝑐 ) <s 𝑌 ↔ ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) ) |
555 |
548 554
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( ( 𝑐 -s 𝐴 ) ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
556 |
525 555
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ) |
557 |
521 414
|
addscld |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 1s +s ( 𝑐 ·s 𝑑 ) ) ∈ No ) |
558 |
557 412 409
|
sltsubaddd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ) ) |
559 |
521 414 413
|
sltaddsubd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) <s ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
560 |
558 559
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( ( ( 1s +s ( 𝑐 ·s 𝑑 ) ) -s ( 𝐴 ·s 𝑑 ) ) <s ( 𝑐 ·s 𝑌 ) ↔ 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) ) |
561 |
556 560
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → 1s <s ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) |
562 |
561 518
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( R ‘ 𝐴 ) ∧ 𝑑 ∈ ∪ ( 𝐿 “ ω ) ) ) → ( 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
563 |
562
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) → 1s <s 𝑓 ) ) |
564 |
520 563
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ∨ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑓 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) ) → 1s <s 𝑓 ) ) |
565 |
428 564
|
biimtrid |
⊢ ( 𝜑 → ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 1s <s 𝑓 ) ) |
566 |
|
velsn |
⊢ ( 𝑒 ∈ { 1s } ↔ 𝑒 = 1s ) |
567 |
|
breq1 |
⊢ ( 𝑒 = 1s → ( 𝑒 <s 𝑓 ↔ 1s <s 𝑓 ) ) |
568 |
567
|
imbi2d |
⊢ ( 𝑒 = 1s → ( ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 𝑓 ) ↔ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 1s <s 𝑓 ) ) ) |
569 |
566 568
|
sylbi |
⊢ ( 𝑒 ∈ { 1s } → ( ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 𝑓 ) ↔ ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 1s <s 𝑓 ) ) ) |
570 |
565 569
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑒 ∈ { 1s } → ( 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) → 𝑒 <s 𝑓 ) ) ) |
571 |
570
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ { 1s } ∧ 𝑓 ∈ ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) → 𝑒 <s 𝑓 ) |
572 |
105 394 146 419 571
|
ssltd |
⊢ ( 𝜑 → { 1s } <<s ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) |
573 |
81 379 572
|
cuteq1 |
⊢ ( 𝜑 → ( ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) |s ( { 𝑏 ∣ ∃ 𝑐 ∈ ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) ∃ 𝑑 ∈ ∪ ( 𝑅 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ∪ { 𝑏 ∣ ∃ 𝑐 ∈ ( R ‘ 𝐴 ) ∃ 𝑑 ∈ ∪ ( 𝐿 “ ω ) 𝑏 = ( ( ( 𝑐 ·s 𝑌 ) +s ( 𝐴 ·s 𝑑 ) ) -s ( 𝑐 ·s 𝑑 ) ) } ) ) = 1s ) |
574 |
19 573
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝑌 ) = 1s ) |