Metamath Proof Explorer


Theorem precsexlem4

Description: Lemma for surreal reciprocals. Calculate the value of the recursive left function at a successor. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
precsexlem.2 𝐿 = ( 1st𝐹 )
precsexlem.3 𝑅 = ( 2nd𝐹 )
Assertion precsexlem4 ( 𝐼 ∈ ω → ( 𝐿 ‘ suc 𝐼 ) = ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )

Proof

Step Hyp Ref Expression
1 precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
2 precsexlem.2 𝐿 = ( 1st𝐹 )
3 precsexlem.3 𝑅 = ( 2nd𝐹 )
4 2 fveq1i ( 𝐿 ‘ suc 𝐼 ) = ( ( 1st𝐹 ) ‘ suc 𝐼 )
5 peano2 ( 𝐼 ∈ ω → suc 𝐼 ∈ ω )
6 nnon ( suc 𝐼 ∈ ω → suc 𝐼 ∈ On )
7 rdgfnon rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) Fn On
8 1 fneq1i ( 𝐹 Fn On ↔ rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) Fn On )
9 7 8 mpbir 𝐹 Fn On
10 fvco2 ( ( 𝐹 Fn On ∧ suc 𝐼 ∈ On ) → ( ( 1st𝐹 ) ‘ suc 𝐼 ) = ( 1st ‘ ( 𝐹 ‘ suc 𝐼 ) ) )
11 9 10 mpan ( suc 𝐼 ∈ On → ( ( 1st𝐹 ) ‘ suc 𝐼 ) = ( 1st ‘ ( 𝐹 ‘ suc 𝐼 ) ) )
12 5 6 11 3syl ( 𝐼 ∈ ω → ( ( 1st𝐹 ) ‘ suc 𝐼 ) = ( 1st ‘ ( 𝐹 ‘ suc 𝐼 ) ) )
13 1 2 3 precsexlem3 ( 𝐼 ∈ ω → ( 𝐹 ‘ suc 𝐼 ) = ⟨ ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( ( 𝑅𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ )
14 13 fveq2d ( 𝐼 ∈ ω → ( 1st ‘ ( 𝐹 ‘ suc 𝐼 ) ) = ( 1st ‘ ⟨ ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( ( 𝑅𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) )
15 fvex ( 𝐿𝐼 ) ∈ V
16 fvex ( R ‘ 𝐴 ) ∈ V
17 16 15 ab2rexex { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∈ V
18 fvex ( L ‘ 𝐴 ) ∈ V
19 18 rabex { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∈ V
20 fvex ( 𝑅𝐼 ) ∈ V
21 19 20 ab2rexex { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ∈ V
22 17 21 unex ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ∈ V
23 15 22 unex ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ∈ V
24 19 15 ab2rexex { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∈ V
25 16 20 ab2rexex { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ∈ V
26 24 25 unex ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ∈ V
27 20 26 unex ( ( 𝑅𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ∈ V
28 23 27 op1st ( 1st ‘ ⟨ ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( ( 𝑅𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) = ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) )
29 14 28 eqtrdi ( 𝐼 ∈ ω → ( 1st ‘ ( 𝐹 ‘ suc 𝐼 ) ) = ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
30 12 29 eqtrd ( 𝐼 ∈ ω → ( ( 1st𝐹 ) ‘ suc 𝐼 ) = ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
31 4 30 eqtrid ( 𝐼 ∈ ω → ( 𝐿 ‘ suc 𝐼 ) = ( ( 𝐿𝐼 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝐼 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )