Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
4 |
|
nnawordex |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ⊆ 𝐽 ↔ ∃ 𝑘 ∈ ω ( 𝐼 +o 𝑘 ) = 𝐽 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑘 = ∅ → ( 𝐼 +o 𝑘 ) = ( 𝐼 +o ∅ ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑘 = ∅ → ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) = ( 𝐿 ‘ ( 𝐼 +o ∅ ) ) ) |
7 |
6
|
sseq2d |
⊢ ( 𝑘 = ∅ → ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) ↔ ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o ∅ ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐼 +o 𝑘 ) = ( 𝐼 +o 𝑗 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) = ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ) |
10 |
9
|
sseq2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) ↔ ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑘 = suc 𝑗 → ( 𝐼 +o 𝑘 ) = ( 𝐼 +o suc 𝑗 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑘 = suc 𝑗 → ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) = ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) ) |
13 |
12
|
sseq2d |
⊢ ( 𝑘 = suc 𝑗 → ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) ↔ ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) ) ) |
14 |
|
nna0 |
⊢ ( 𝐼 ∈ ω → ( 𝐼 +o ∅ ) = 𝐼 ) |
15 |
14
|
fveq2d |
⊢ ( 𝐼 ∈ ω → ( 𝐿 ‘ ( 𝐼 +o ∅ ) ) = ( 𝐿 ‘ 𝐼 ) ) |
16 |
15
|
eqimsscd |
⊢ ( 𝐼 ∈ ω → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o ∅ ) ) ) |
17 |
|
nnacl |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐼 +o 𝑗 ) ∈ ω ) |
18 |
|
ssun1 |
⊢ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ⊆ ( ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ ( 𝐼 +o 𝑗 ) ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
19 |
1 2 3
|
precsexlem4 |
⊢ ( ( 𝐼 +o 𝑗 ) ∈ ω → ( 𝐿 ‘ suc ( 𝐼 +o 𝑗 ) ) = ( ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ ( 𝐼 +o 𝑗 ) ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
20 |
18 19
|
sseqtrrid |
⊢ ( ( 𝐼 +o 𝑗 ) ∈ ω → ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ⊆ ( 𝐿 ‘ suc ( 𝐼 +o 𝑗 ) ) ) |
21 |
17 20
|
syl |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ⊆ ( 𝐿 ‘ suc ( 𝐼 +o 𝑗 ) ) ) |
22 |
|
nnasuc |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐼 +o suc 𝑗 ) = suc ( 𝐼 +o 𝑗 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) = ( 𝐿 ‘ suc ( 𝐼 +o 𝑗 ) ) ) |
24 |
21 23
|
sseqtrrd |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ⊆ ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) ) |
25 |
|
sstr2 |
⊢ ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) → ( ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) ⊆ ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) ) ) |
26 |
24 25
|
syl5com |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) ) ) |
27 |
26
|
expcom |
⊢ ( 𝑗 ∈ ω → ( 𝐼 ∈ ω → ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑗 ) ) → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o suc 𝑗 ) ) ) ) ) |
28 |
7 10 13 16 27
|
finds2 |
⊢ ( 𝑘 ∈ ω → ( 𝐼 ∈ ω → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) ) |
30 |
|
fveq2 |
⊢ ( ( 𝐼 +o 𝑘 ) = 𝐽 → ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) = ( 𝐿 ‘ 𝐽 ) ) |
31 |
30
|
sseq2d |
⊢ ( ( 𝐼 +o 𝑘 ) = 𝐽 → ( ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ ( 𝐼 +o 𝑘 ) ) ↔ ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ 𝐽 ) ) ) |
32 |
29 31
|
syl5ibcom |
⊢ ( ( 𝐼 ∈ ω ∧ 𝑘 ∈ ω ) → ( ( 𝐼 +o 𝑘 ) = 𝐽 → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ 𝐽 ) ) ) |
33 |
32
|
rexlimdva |
⊢ ( 𝐼 ∈ ω → ( ∃ 𝑘 ∈ ω ( 𝐼 +o 𝑘 ) = 𝐽 → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ 𝐽 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( ∃ 𝑘 ∈ ω ( 𝐼 +o 𝑘 ) = 𝐽 → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ 𝐽 ) ) ) |
35 |
4 34
|
sylbid |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ⊆ 𝐽 → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ 𝐽 ) ) ) |
36 |
35
|
3impia |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽 ) → ( 𝐿 ‘ 𝐼 ) ⊆ ( 𝐿 ‘ 𝐽 ) ) |