Metamath Proof Explorer


Theorem precsexlem8

Description: Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
precsexlem.2 𝐿 = ( 1st𝐹 )
precsexlem.3 𝑅 = ( 2nd𝐹 )
precsexlem.4 ( 𝜑𝐴 No )
precsexlem.5 ( 𝜑 → 0s <s 𝐴 )
precsexlem.6 ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
Assertion precsexlem8 ( ( 𝜑𝐼 ∈ ω ) → ( ( 𝐿𝐼 ) ⊆ No ∧ ( 𝑅𝐼 ) ⊆ No ) )

Proof

Step Hyp Ref Expression
1 precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
2 precsexlem.2 𝐿 = ( 1st𝐹 )
3 precsexlem.3 𝑅 = ( 2nd𝐹 )
4 precsexlem.4 ( 𝜑𝐴 No )
5 precsexlem.5 ( 𝜑 → 0s <s 𝐴 )
6 precsexlem.6 ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
7 fveq2 ( 𝑖 = ∅ → ( 𝐿𝑖 ) = ( 𝐿 ‘ ∅ ) )
8 7 sseq1d ( 𝑖 = ∅ → ( ( 𝐿𝑖 ) ⊆ No ↔ ( 𝐿 ‘ ∅ ) ⊆ No ) )
9 fveq2 ( 𝑖 = ∅ → ( 𝑅𝑖 ) = ( 𝑅 ‘ ∅ ) )
10 9 sseq1d ( 𝑖 = ∅ → ( ( 𝑅𝑖 ) ⊆ No ↔ ( 𝑅 ‘ ∅ ) ⊆ No ) )
11 8 10 anbi12d ( 𝑖 = ∅ → ( ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) )
12 11 imbi2d ( 𝑖 = ∅ → ( ( 𝜑 → ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) ) )
13 fveq2 ( 𝑖 = 𝑗 → ( 𝐿𝑖 ) = ( 𝐿𝑗 ) )
14 13 sseq1d ( 𝑖 = 𝑗 → ( ( 𝐿𝑖 ) ⊆ No ↔ ( 𝐿𝑗 ) ⊆ No ) )
15 fveq2 ( 𝑖 = 𝑗 → ( 𝑅𝑖 ) = ( 𝑅𝑗 ) )
16 15 sseq1d ( 𝑖 = 𝑗 → ( ( 𝑅𝑖 ) ⊆ No ↔ ( 𝑅𝑗 ) ⊆ No ) )
17 14 16 anbi12d ( 𝑖 = 𝑗 → ( ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ↔ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) )
18 17 imbi2d ( 𝑖 = 𝑗 → ( ( 𝜑 → ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ) )
19 fveq2 ( 𝑖 = suc 𝑗 → ( 𝐿𝑖 ) = ( 𝐿 ‘ suc 𝑗 ) )
20 19 sseq1d ( 𝑖 = suc 𝑗 → ( ( 𝐿𝑖 ) ⊆ No ↔ ( 𝐿 ‘ suc 𝑗 ) ⊆ No ) )
21 fveq2 ( 𝑖 = suc 𝑗 → ( 𝑅𝑖 ) = ( 𝑅 ‘ suc 𝑗 ) )
22 21 sseq1d ( 𝑖 = suc 𝑗 → ( ( 𝑅𝑖 ) ⊆ No ↔ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) )
23 20 22 anbi12d ( 𝑖 = suc 𝑗 → ( ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) )
24 23 imbi2d ( 𝑖 = suc 𝑗 → ( ( 𝜑 → ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) )
25 fveq2 ( 𝑖 = 𝐼 → ( 𝐿𝑖 ) = ( 𝐿𝐼 ) )
26 25 sseq1d ( 𝑖 = 𝐼 → ( ( 𝐿𝑖 ) ⊆ No ↔ ( 𝐿𝐼 ) ⊆ No ) )
27 fveq2 ( 𝑖 = 𝐼 → ( 𝑅𝑖 ) = ( 𝑅𝐼 ) )
28 27 sseq1d ( 𝑖 = 𝐼 → ( ( 𝑅𝑖 ) ⊆ No ↔ ( 𝑅𝐼 ) ⊆ No ) )
29 26 28 anbi12d ( 𝑖 = 𝐼 → ( ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ↔ ( ( 𝐿𝐼 ) ⊆ No ∧ ( 𝑅𝐼 ) ⊆ No ) ) )
30 29 imbi2d ( 𝑖 = 𝐼 → ( ( 𝜑 → ( ( 𝐿𝑖 ) ⊆ No ∧ ( 𝑅𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿𝐼 ) ⊆ No ∧ ( 𝑅𝐼 ) ⊆ No ) ) ) )
31 1 2 3 precsexlem1 ( 𝐿 ‘ ∅ ) = { 0s }
32 0sno 0s No
33 snssi ( 0s No → { 0s } ⊆ No )
34 32 33 ax-mp { 0s } ⊆ No
35 31 34 eqsstri ( 𝐿 ‘ ∅ ) ⊆ No
36 1 2 3 precsexlem2 ( 𝑅 ‘ ∅ ) = ∅
37 0ss ∅ ⊆ No
38 36 37 eqsstri ( 𝑅 ‘ ∅ ) ⊆ No
39 35 38 pm3.2i ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No )
40 39 a1i ( 𝜑 → ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) )
41 1 2 3 precsexlem4 ( 𝑗 ∈ ω → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
42 41 3ad2ant2 ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
43 simp3l ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝐿𝑗 ) ⊆ No )
44 1sno 1s No
45 44 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 1s No )
46 rightssno ( R ‘ 𝐴 ) ⊆ No
47 simprl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) )
48 46 47 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝑅 No )
49 4 3ad2ant1 ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → 𝐴 No )
50 49 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝐴 No )
51 48 50 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No )
52 simpl3l ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐿𝑗 ) ⊆ No )
53 simprr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑦𝐿 ∈ ( 𝐿𝑗 ) )
54 52 53 sseldd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑦𝐿 No )
55 51 54 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No )
56 45 55 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No )
57 32 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s No )
58 5 3ad2ant1 ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → 0s <s 𝐴 )
59 58 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s 𝐴 )
60 breq2 ( 𝑥𝑂 = 𝑥𝑅 → ( 𝐴 <s 𝑥𝑂𝐴 <s 𝑥𝑅 ) )
61 rightval ( R ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥𝑂 }
62 60 61 elrab2 ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑥𝑅 ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝐴 <s 𝑥𝑅 ) )
63 62 simprbi ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑥𝑅 )
64 47 63 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝐴 <s 𝑥𝑅 )
65 57 50 48 59 64 slttrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s 𝑥𝑅 )
66 65 sgt0ne0d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝑅 ≠ 0s )
67 breq2 ( 𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅 ) )
68 oveq1 ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑅 ·s 𝑦 ) )
69 68 eqeq1d ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
70 69 rexbidv ( 𝑥𝑂 = 𝑥𝑅 → ( ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
71 67 70 imbi12d ( 𝑥𝑂 = 𝑥𝑅 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) )
72 6 3ad2ant1 ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
73 72 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
74 elun2 ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
75 47 74 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
76 71 73 75 rspcdva ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
77 65 76 mpd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s )
78 56 48 66 77 divsclwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∈ No )
79 eleq1 ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝑎 No ↔ ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∈ No ) )
80 78 79 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → 𝑎 No ) )
81 80 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → 𝑎 No ) )
82 81 abssdv ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ⊆ No )
83 44 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s No )
84 leftssno ( L ‘ 𝐴 ) ⊆ No
85 ssrab2 { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 )
86 simprl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } )
87 85 86 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) )
88 84 87 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 No )
89 49 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝐴 No )
90 88 89 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No )
91 simpl3r ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑅𝑗 ) ⊆ No )
92 simprr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑦𝑅 ∈ ( 𝑅𝑗 ) )
93 91 92 sseldd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑦𝑅 No )
94 90 93 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No )
95 83 94 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No )
96 breq2 ( 𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿 ) )
97 96 elrab ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑥𝐿 ) )
98 97 simprbi ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑥𝐿 )
99 86 98 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s 𝑥𝐿 )
100 99 sgt0ne0d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 ≠ 0s )
101 breq2 ( 𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿 ) )
102 oveq1 ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝐿 ·s 𝑦 ) )
103 102 eqeq1d ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
104 103 rexbidv ( 𝑥𝑂 = 𝑥𝐿 → ( ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
105 101 104 imbi12d ( 𝑥𝑂 = 𝑥𝐿 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) )
106 72 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
107 elun1 ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
108 87 107 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
109 105 106 108 rspcdva ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
110 99 109 mpd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s )
111 95 88 100 110 divsclwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ∈ No )
112 eleq1 ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝑎 No ↔ ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ∈ No ) )
113 111 112 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → 𝑎 No ) )
114 113 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → 𝑎 No ) )
115 114 abssdv ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ⊆ No )
116 82 115 unssd ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ⊆ No )
117 43 116 unssd ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ⊆ No )
118 42 117 eqsstrd ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ suc 𝑗 ) ⊆ No )
119 1 2 3 precsexlem5 ( 𝑗 ∈ ω → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) )
120 119 3ad2ant2 ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) )
121 simp3r ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝑅𝑗 ) ⊆ No )
122 44 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 1s No )
123 simprl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } )
124 85 123 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) )
125 84 124 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 No )
126 49 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝐴 No )
127 125 126 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No )
128 simpl3l ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐿𝑗 ) ⊆ No )
129 simprr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑦𝐿 ∈ ( 𝐿𝑗 ) )
130 128 129 sseldd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑦𝐿 No )
131 127 130 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No )
132 122 131 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No )
133 123 98 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s 𝑥𝐿 )
134 133 sgt0ne0d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 ≠ 0s )
135 72 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
136 124 107 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
137 105 135 136 rspcdva ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
138 133 137 mpd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s )
139 132 125 134 138 divsclwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∈ No )
140 eleq1 ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 𝑎 No ↔ ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∈ No ) )
141 139 140 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 𝑎 No ) )
142 141 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 𝑎 No ) )
143 142 abssdv ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ⊆ No )
144 44 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s No )
145 simprl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) )
146 46 145 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 No )
147 49 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝐴 No )
148 146 147 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No )
149 simpl3r ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑅𝑗 ) ⊆ No )
150 simprr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑦𝑅 ∈ ( 𝑅𝑗 ) )
151 149 150 sseldd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑦𝑅 No )
152 148 151 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No )
153 144 152 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No )
154 32 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s No )
155 58 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s 𝐴 )
156 145 63 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝐴 <s 𝑥𝑅 )
157 154 147 146 155 156 slttrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s 𝑥𝑅 )
158 157 sgt0ne0d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 ≠ 0s )
159 72 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
160 145 74 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
161 71 159 160 rspcdva ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
162 157 161 mpd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s )
163 153 146 158 162 divsclwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ∈ No )
164 eleq1 ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 𝑎 No ↔ ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ∈ No ) )
165 163 164 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 𝑎 No ) )
166 165 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 𝑎 No ) )
167 166 abssdv ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ⊆ No )
168 143 167 unssd ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ⊆ No )
169 121 168 unssd ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⊆ No )
170 120 169 eqsstrd ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ suc 𝑗 ) ⊆ No )
171 118 170 jca ( ( 𝜑𝑗 ∈ ω ∧ ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) )
172 171 3exp ( 𝜑 → ( 𝑗 ∈ ω → ( ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) )
173 172 com12 ( 𝑗 ∈ ω → ( 𝜑 → ( ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) )
174 173 a2d ( 𝑗 ∈ ω → ( ( 𝜑 → ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) ) → ( 𝜑 → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) )
175 12 18 24 30 40 174 finds ( 𝐼 ∈ ω → ( 𝜑 → ( ( 𝐿𝐼 ) ⊆ No ∧ ( 𝑅𝐼 ) ⊆ No ) ) )
176 175 impcom ( ( 𝜑𝐼 ∈ ω ) → ( ( 𝐿𝐼 ) ⊆ No ∧ ( 𝑅𝐼 ) ⊆ No ) )