Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
7 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ ∅ ) ) |
8 |
7
|
sseq1d |
⊢ ( 𝑖 = ∅ → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ ∅ ) ⊆ No ) ) |
9 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ∅ ) ) |
10 |
9
|
sseq1d |
⊢ ( 𝑖 = ∅ → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ ∅ ) ⊆ No ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑖 = ∅ → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑖 = ∅ → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) |
14 |
13
|
sseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ 𝑗 ) ⊆ No ) ) |
15 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑗 ) ) |
16 |
15
|
sseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ suc 𝑗 ) ) |
20 |
19
|
sseq1d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ suc 𝑗 ) ⊆ No ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ suc 𝑗 ) ) |
22 |
21
|
sseq1d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑖 = suc 𝑗 → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝐼 ) ) |
26 |
25
|
sseq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ 𝐼 ) ⊆ No ) ) |
27 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝐼 ) ) |
28 |
27
|
sseq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) |
29 |
26 28
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) ) ) |
31 |
1 2 3
|
precsexlem1 |
⊢ ( 𝐿 ‘ ∅ ) = { 0s } |
32 |
|
0sno |
⊢ 0s ∈ No |
33 |
|
snssi |
⊢ ( 0s ∈ No → { 0s } ⊆ No ) |
34 |
32 33
|
ax-mp |
⊢ { 0s } ⊆ No |
35 |
31 34
|
eqsstri |
⊢ ( 𝐿 ‘ ∅ ) ⊆ No |
36 |
1 2 3
|
precsexlem2 |
⊢ ( 𝑅 ‘ ∅ ) = ∅ |
37 |
|
0ss |
⊢ ∅ ⊆ No |
38 |
36 37
|
eqsstri |
⊢ ( 𝑅 ‘ ∅ ) ⊆ No |
39 |
35 38
|
pm3.2i |
⊢ ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) |
40 |
39
|
a1i |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) |
41 |
1 2 3
|
precsexlem4 |
⊢ ( 𝑗 ∈ ω → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
43 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
44 |
|
1sno |
⊢ 1s ∈ No |
45 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
46 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
47 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) |
48 |
46 47
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
49 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → 𝐴 ∈ No ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
51 |
48 50
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
52 |
|
simpl3l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
53 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) |
54 |
52 53
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
55 |
51 54
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
56 |
45 55
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
57 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s ∈ No ) |
58 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → 0s <s 𝐴 ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝐴 ) |
60 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑥𝑅 ) ) |
61 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑥𝑂 } |
62 |
60 61
|
elrab2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑥𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑥𝑅 ) ) |
63 |
62
|
simprbi |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑥𝑅 ) |
64 |
47 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 <s 𝑥𝑅 ) |
65 |
57 50 48 59 64
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
66 |
65
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
67 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅 ) ) |
68 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑅 ·s 𝑦 ) ) |
69 |
68
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
70 |
69
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
71 |
67 70
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) ) |
72 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
74 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
75 |
47 74
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
76 |
71 73 75
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
77 |
65 76
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
78 |
56 48 66 77
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∈ No ) |
79 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∈ No ) ) |
80 |
78 79
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
81 |
80
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
82 |
81
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ⊆ No ) |
83 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
84 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
85 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 ) |
86 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |
87 |
85 86
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
88 |
84 87
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
89 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
90 |
88 89
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
91 |
|
simpl3r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
92 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) |
93 |
91 92
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
94 |
90 93
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
95 |
83 94
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
96 |
|
breq2 |
⊢ ( 𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿 ) ) |
97 |
96
|
elrab |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑥𝐿 ) ) |
98 |
97
|
simprbi |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑥𝐿 ) |
99 |
86 98
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
100 |
99
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
101 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿 ) ) |
102 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝐿 ·s 𝑦 ) ) |
103 |
102
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
104 |
103
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
105 |
101 104
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) ) |
106 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
107 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
108 |
87 107
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
109 |
105 106 108
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
110 |
99 109
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
111 |
95 88 100 110
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ∈ No ) |
112 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ∈ No ) ) |
113 |
111 112
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
114 |
113
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
115 |
114
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ⊆ No ) |
116 |
82 115
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ⊆ No ) |
117 |
43 116
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ⊆ No ) |
118 |
42 117
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ suc 𝑗 ) ⊆ No ) |
119 |
1 2 3
|
precsexlem5 |
⊢ ( 𝑗 ∈ ω → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
120 |
119
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
121 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
122 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
123 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |
124 |
85 123
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
125 |
84 124
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
126 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
127 |
125 126
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
128 |
|
simpl3l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
129 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) |
130 |
128 129
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
131 |
127 130
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
132 |
122 131
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
133 |
123 98
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
134 |
133
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
135 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
136 |
124 107
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
137 |
105 135 136
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
138 |
133 137
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
139 |
132 125 134 138
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∈ No ) |
140 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∈ No ) ) |
141 |
139 140
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
142 |
141
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
143 |
142
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ⊆ No ) |
144 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
145 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) |
146 |
46 145
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
147 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
148 |
146 147
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
149 |
|
simpl3r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
150 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) |
151 |
149 150
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
152 |
148 151
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
153 |
144 152
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
154 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s ∈ No ) |
155 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝐴 ) |
156 |
145 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 <s 𝑥𝑅 ) |
157 |
154 147 146 155 156
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
158 |
157
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
159 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
160 |
145 74
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
161 |
71 159 160
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
162 |
157 161
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
163 |
153 146 158 162
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ∈ No ) |
164 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ∈ No ) ) |
165 |
163 164
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
166 |
165
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
167 |
166
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ⊆ No ) |
168 |
143 167
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ⊆ No ) |
169 |
121 168
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⊆ No ) |
170 |
120 169
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) |
171 |
118 170
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) |
172 |
171
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ω → ( ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
173 |
172
|
com12 |
⊢ ( 𝑗 ∈ ω → ( 𝜑 → ( ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
174 |
173
|
a2d |
⊢ ( 𝑗 ∈ ω → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝜑 → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
175 |
12 18 24 30 40 174
|
finds |
⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) ) |
176 |
175
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ω ) → ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) |