Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
7 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ ∅ ) ) |
8 |
7
|
raleqdv |
⊢ ( 𝑖 = ∅ → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
9 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ∅ ) ) |
10 |
9
|
raleqdv |
⊢ ( 𝑖 = ∅ → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑖 = ∅ → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑖 = ∅ → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) |
14 |
13
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
15 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑗 ) ) |
16 |
15
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ suc 𝑗 ) ) |
20 |
19
|
raleqdv |
⊢ ( 𝑖 = suc 𝑗 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ suc 𝑗 ) ) |
22 |
21
|
raleqdv |
⊢ ( 𝑖 = suc 𝑗 → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑖 = suc 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑏 = 𝑟 → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 𝑟 ) ) |
25 |
24
|
breq1d |
⊢ ( 𝑏 = 𝑟 → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ) |
27 |
|
oveq2 |
⊢ ( 𝑐 = 𝑠 → ( 𝐴 ·s 𝑐 ) = ( 𝐴 ·s 𝑠 ) ) |
28 |
27
|
breq2d |
⊢ ( 𝑐 = 𝑠 → ( 1s <s ( 𝐴 ·s 𝑐 ) ↔ 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
29 |
28
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) |
30 |
26 29
|
anbi12i |
⊢ ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
31 |
23 30
|
bitrdi |
⊢ ( 𝑖 = suc 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝐼 ) ) |
34 |
33
|
raleqdv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
35 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝐼 ) ) |
36 |
35
|
raleqdv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
37 |
34 36
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
38 |
37
|
imbi2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) ) |
39 |
|
muls01 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ·s 0s ) = 0s ) |
40 |
4 39
|
syl |
⊢ ( 𝜑 → ( 𝐴 ·s 0s ) = 0s ) |
41 |
|
0slt1s |
⊢ 0s <s 1s |
42 |
40 41
|
eqbrtrdi |
⊢ ( 𝜑 → ( 𝐴 ·s 0s ) <s 1s ) |
43 |
1 2 3
|
precsexlem1 |
⊢ ( 𝐿 ‘ ∅ ) = { 0s } |
44 |
43
|
raleqi |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ { 0s } ( 𝐴 ·s 𝑏 ) <s 1s ) |
45 |
|
0sno |
⊢ 0s ∈ No |
46 |
45
|
elexi |
⊢ 0s ∈ V |
47 |
|
oveq2 |
⊢ ( 𝑏 = 0s → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 0s ) ) |
48 |
47
|
breq1d |
⊢ ( 𝑏 = 0s → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) ) |
49 |
46 48
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { 0s } ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) |
50 |
44 49
|
bitri |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) |
51 |
42 50
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ) |
52 |
|
ral0 |
⊢ ∀ 𝑐 ∈ ∅ 1s <s ( 𝐴 ·s 𝑐 ) |
53 |
1 2 3
|
precsexlem2 |
⊢ ( 𝑅 ‘ ∅ ) = ∅ |
54 |
53
|
raleqi |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ∅ 1s <s ( 𝐴 ·s 𝑐 ) ) |
55 |
52 54
|
mpbir |
⊢ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) |
56 |
51 55
|
jctir |
⊢ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
57 |
1 2 3
|
precsexlem4 |
⊢ ( 𝑗 ∈ ω → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
58 |
57
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
59 |
58
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ↔ 𝑟 ∈ ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) ) |
60 |
|
elun |
⊢ ( 𝑟 ∈ ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
61 |
|
elun |
⊢ ( 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∨ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
62 |
|
vex |
⊢ 𝑟 ∈ V |
63 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
64 |
63
|
2rexbidv |
⊢ ( 𝑎 = 𝑟 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
65 |
62 64
|
elab |
⊢ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
66 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
67 |
66
|
2rexbidv |
⊢ ( 𝑎 = 𝑟 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
68 |
62 67
|
elab |
⊢ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
69 |
65 68
|
orbi12i |
⊢ ( ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∨ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
70 |
61 69
|
bitri |
⊢ ( 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
71 |
70
|
orbi2i |
⊢ ( ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) |
72 |
60 71
|
bitri |
⊢ ( 𝑟 ∈ ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) |
73 |
59 72
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) ) |
74 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) |
75 |
25
|
rspccv |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s → ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
76 |
74 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
77 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → 𝐴 ∈ No ) |
78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
79 |
|
1sno |
⊢ 1s ∈ No |
80 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
81 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
82 |
81
|
sseli |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ No ) |
83 |
82
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ∈ No ) |
84 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
85 |
83 84
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
86 |
85
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
87 |
1 2 3 4 5 6
|
precsexlem8 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) |
88 |
87
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
89 |
88
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
90 |
89
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) → 𝑦𝐿 ∈ No ) |
91 |
90
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
92 |
86 91
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
93 |
80 92
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
94 |
83
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
95 |
45
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s ∈ No ) |
96 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → 0s <s 𝐴 ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝐴 ) |
98 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑥𝑅 ) ) |
99 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑥𝑂 } |
100 |
98 99
|
elrab2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑥𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑥𝑅 ) ) |
101 |
100
|
simprbi |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑥𝑅 ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑥𝑅 ) |
103 |
95 84 83 97 102
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝑥𝑅 ) |
104 |
103
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ≠ 0s ) |
105 |
104
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
106 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅 ) ) |
107 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑅 ·s 𝑦 ) ) |
108 |
107
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
109 |
108
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
110 |
106 109
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) ) |
111 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
112 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
113 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
114 |
113
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
115 |
110 112 114
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
116 |
103 115
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
117 |
116
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
118 |
78 93 94 105 117
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
119 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦𝐿 → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 𝑦𝐿 ) ) |
120 |
119
|
breq1d |
⊢ ( 𝑏 = 𝑦𝐿 → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) ) |
121 |
120
|
rspccva |
⊢ ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
122 |
74 121
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
123 |
122
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
124 |
78 91
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) ∈ No ) |
125 |
84 83
|
posdifsd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 𝐴 <s 𝑥𝑅 ↔ 0s <s ( 𝑥𝑅 -s 𝐴 ) ) ) |
126 |
102 125
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) ) |
127 |
126
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) ) |
128 |
124 80 86 127
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 𝑦𝐿 ) <s 1s ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) ) ) |
129 |
123 128
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) ) |
130 |
86
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) = ( 𝑥𝑅 -s 𝐴 ) ) |
131 |
129 130
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝑥𝑅 -s 𝐴 ) ) |
132 |
86 124
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ∈ No ) |
133 |
78 132 94
|
sltaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s 𝑥𝑅 ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝑥𝑅 -s 𝐴 ) ) ) |
134 |
131 133
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s 𝑥𝑅 ) |
135 |
78 80 92
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ) |
136 |
78
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
137 |
78 86 91
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
138 |
136 137
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
139 |
135 138
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
140 |
94
|
mulslidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) = 𝑥𝑅 ) |
141 |
134 139 140
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) <s ( 1s ·s 𝑥𝑅 ) ) |
142 |
78 93
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ∈ No ) |
143 |
103
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
144 |
142 80 94 143 117
|
sltdivmul2wd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) <s 1s ↔ ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) <s ( 1s ·s 𝑥𝑅 ) ) ) |
145 |
141 144
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) <s 1s ) |
146 |
118 145
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) <s 1s ) |
147 |
|
oveq2 |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
148 |
147
|
breq1d |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( ( 𝐴 ·s 𝑟 ) <s 1s ↔ ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) <s 1s ) ) |
149 |
146 148
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
150 |
149
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
151 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
152 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
153 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
154 |
|
elrabi |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
155 |
154
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
156 |
153 155
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ No ) |
157 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝐴 ∈ No ) |
158 |
156 157
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
159 |
158
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
160 |
87
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
161 |
160
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
162 |
161
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) → 𝑦𝑅 ∈ No ) |
163 |
162
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
164 |
159 163
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
165 |
152 164
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
166 |
156
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
167 |
|
breq2 |
⊢ ( 𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿 ) ) |
168 |
167
|
elrab |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑥𝐿 ) ) |
169 |
168
|
simprbi |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑥𝐿 ) |
170 |
169
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s 𝑥𝐿 ) |
171 |
170
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ≠ 0s ) |
172 |
171
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
173 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿 ) ) |
174 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝐿 ·s 𝑦 ) ) |
175 |
174
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
176 |
175
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
177 |
173 176
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) ) |
178 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
179 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
180 |
155 179
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
181 |
177 178 180
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
182 |
170 181
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
183 |
182
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
184 |
151 165 166 172 183
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
185 |
157 156
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No ) |
186 |
185
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No ) |
187 |
186
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) = ( 𝐴 -s 𝑥𝐿 ) ) |
188 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) |
189 |
|
oveq2 |
⊢ ( 𝑐 = 𝑦𝑅 → ( 𝐴 ·s 𝑐 ) = ( 𝐴 ·s 𝑦𝑅 ) ) |
190 |
189
|
breq2d |
⊢ ( 𝑐 = 𝑦𝑅 → ( 1s <s ( 𝐴 ·s 𝑐 ) ↔ 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
191 |
190
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
192 |
188 191
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
193 |
192
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
194 |
151 163
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝑅 ) ∈ No ) |
195 |
|
breq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 <s 𝐴 ↔ 𝑥𝐿 <s 𝐴 ) ) |
196 |
|
leftval |
⊢ ( L ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥𝑂 <s 𝐴 } |
197 |
195 196
|
elrab2 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ↔ ( 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝑥𝐿 <s 𝐴 ) ) |
198 |
197
|
simprbi |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 <s 𝐴 ) |
199 |
155 198
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 <s 𝐴 ) |
200 |
156 157
|
posdifsd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑥𝐿 <s 𝐴 ↔ 0s <s ( 𝐴 -s 𝑥𝐿 ) ) ) |
201 |
199 200
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) ) |
202 |
201
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) ) |
203 |
152 194 186 202
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s <s ( 𝐴 ·s 𝑦𝑅 ) ↔ ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
204 |
193 203
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
205 |
187 204
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
206 |
156 157
|
negsubsdi2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) ) |
207 |
206
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) ) |
208 |
159 194
|
mulnegs1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
209 |
206
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
210 |
209
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
211 |
208 210
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
212 |
205 207 211
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) <s ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
213 |
159 194
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ∈ No ) |
214 |
213 159
|
sltnegd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ↔ ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) <s ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) ) |
215 |
212 214
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ) |
216 |
151 213 166
|
sltaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) <s 𝑥𝐿 ↔ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ) ) |
217 |
215 216
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) <s 𝑥𝐿 ) |
218 |
151 152 164
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ) |
219 |
151
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
220 |
151 159 163
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
221 |
219 220
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
222 |
218 221
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
223 |
166
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 ·s 1s ) = 𝑥𝐿 ) |
224 |
217 222 223
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) <s ( 𝑥𝐿 ·s 1s ) ) |
225 |
151 165
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ∈ No ) |
226 |
170
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
227 |
225 152 166 226 183
|
sltdivmulwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) <s 1s ↔ ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) <s ( 𝑥𝐿 ·s 1s ) ) ) |
228 |
224 227
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) <s 1s ) |
229 |
184 228
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) <s 1s ) |
230 |
|
oveq2 |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
231 |
230
|
breq1d |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( ( 𝐴 ·s 𝑟 ) <s 1s ↔ ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) <s 1s ) ) |
232 |
229 231
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
233 |
232
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
234 |
150 233
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
235 |
76 234
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
236 |
73 235
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
237 |
236
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ) |
238 |
1 2 3
|
precsexlem5 |
⊢ ( 𝑗 ∈ ω → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
239 |
238
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
240 |
239
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) ↔ 𝑠 ∈ ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) ) |
241 |
|
elun |
⊢ ( 𝑠 ∈ ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
242 |
|
elun |
⊢ ( 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∨ 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
243 |
|
vex |
⊢ 𝑠 ∈ V |
244 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑠 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
245 |
244
|
2rexbidv |
⊢ ( 𝑎 = 𝑠 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
246 |
243 245
|
elab |
⊢ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
247 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑠 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
248 |
247
|
2rexbidv |
⊢ ( 𝑎 = 𝑠 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
249 |
243 248
|
elab |
⊢ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
250 |
246 249
|
orbi12i |
⊢ ( ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∨ 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
251 |
242 250
|
bitri |
⊢ ( 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
252 |
251
|
orbi2i |
⊢ ( ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) |
253 |
241 252
|
bitri |
⊢ ( 𝑠 ∈ ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) |
254 |
240 253
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) ) |
255 |
28
|
rspccv |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) → ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
256 |
188 255
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
257 |
122
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
258 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
259 |
90
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
260 |
258 259
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) ∈ No ) |
261 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
262 |
185
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No ) |
263 |
201
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) ) |
264 |
260 261 262 263
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 𝑦𝐿 ) <s 1s ↔ ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) ) ) |
265 |
257 264
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) ) |
266 |
262
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) = ( 𝐴 -s 𝑥𝐿 ) ) |
267 |
265 266
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝐴 -s 𝑥𝐿 ) ) |
268 |
158
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
269 |
268 260
|
mulnegs1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
270 |
206
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
271 |
270
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
272 |
269 271
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
273 |
206
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) ) |
274 |
267 272 273
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ) |
275 |
268 260
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ∈ No ) |
276 |
268 275
|
sltnegd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ↔ ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ) ) |
277 |
274 276
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
278 |
156
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
279 |
278 258 275
|
sltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ↔ 𝑥𝐿 <s ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) ) |
280 |
277 279
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 <s ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
281 |
278
|
mulslidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝐿 ) = 𝑥𝐿 ) |
282 |
268 259
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
283 |
258 261 282
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ) |
284 |
258
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
285 |
258 268 259
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
286 |
284 285
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
287 |
283 286
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
288 |
280 281 287
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝐿 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ) |
289 |
261 282
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
290 |
258 289
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ∈ No ) |
291 |
170
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
292 |
182
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
293 |
261 290 278 291 292
|
sltmuldivwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 1s ·s 𝑥𝐿 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ↔ 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) ) ) |
294 |
288 293
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) ) |
295 |
171
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
296 |
258 289 278 295 292
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
297 |
294 296
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
298 |
|
oveq2 |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑠 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
299 |
298
|
breq2d |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 1s <s ( 𝐴 ·s 𝑠 ) ↔ 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) ) |
300 |
297 299
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
301 |
300
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
302 |
85
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
303 |
302
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) = ( 𝑥𝑅 -s 𝐴 ) ) |
304 |
192
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
305 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
306 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
307 |
162
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
308 |
306 307
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝑅 ) ∈ No ) |
309 |
126
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) ) |
310 |
305 308 302 309
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s <s ( 𝐴 ·s 𝑦𝑅 ) ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
311 |
304 310
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
312 |
303 311
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
313 |
83
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
314 |
302 308
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ∈ No ) |
315 |
313 306 314
|
sltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ↔ 𝑥𝑅 <s ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) ) |
316 |
312 315
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 <s ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
317 |
313
|
mulslidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) = 𝑥𝑅 ) |
318 |
302 307
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
319 |
306 305 318
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ) |
320 |
306
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
321 |
306 302 307
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
322 |
320 321
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
323 |
319 322
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
324 |
316 317 323
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ) |
325 |
305 318
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
326 |
306 325
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ∈ No ) |
327 |
103
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
328 |
116
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
329 |
305 326 313 327 328
|
sltmuldivwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 1s ·s 𝑥𝑅 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ↔ 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) ) ) |
330 |
324 329
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) ) |
331 |
104
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
332 |
306 325 313 331 328
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
333 |
330 332
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
334 |
|
oveq2 |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑠 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
335 |
334
|
breq2d |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 1s <s ( 𝐴 ·s 𝑠 ) ↔ 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) |
336 |
333 335
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
337 |
336
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
338 |
301 337
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
339 |
256 338
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
340 |
254 339
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
341 |
340
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) |
342 |
237 341
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
343 |
342
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ω → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
344 |
343
|
com12 |
⊢ ( 𝑗 ∈ ω → ( 𝜑 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
345 |
344
|
a2d |
⊢ ( 𝑗 ∈ ω → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝜑 → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
346 |
12 18 32 38 56 345
|
finds |
⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
347 |
346
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ω ) → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |