Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
2 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 1st ‘ 𝑝 ) = ( 1st ‘ 𝑞 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 𝑞 ) ) |
4 |
3
|
csbeq1d |
⊢ ( 𝑝 = 𝑞 → ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = ⦋ ( 2nd ‘ 𝑞 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) |
5 |
2 4
|
csbeq12dv |
⊢ ( 𝑝 = 𝑞 → ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = ⦋ ( 1st ‘ 𝑞 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) |
6 |
|
rexeq |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
8 |
7
|
abbidv |
⊢ ( 𝑟 = 𝑠 → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) |
9 |
8
|
uneq2d |
⊢ ( 𝑟 = 𝑠 → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
10 |
9
|
uneq2d |
⊢ ( 𝑟 = 𝑠 → ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) = ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
11 |
|
id |
⊢ ( 𝑟 = 𝑠 → 𝑟 = 𝑠 ) |
12 |
|
rexeq |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
14 |
13
|
abbidv |
⊢ ( 𝑟 = 𝑠 → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) |
15 |
14
|
uneq2d |
⊢ ( 𝑟 = 𝑠 → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
16 |
11 15
|
uneq12d |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) = ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
17 |
10 16
|
opeq12d |
⊢ ( 𝑟 = 𝑠 → 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) |
18 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
19 |
18
|
2rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( 𝑥𝑅 -s 𝐴 ) = ( 𝑧𝑅 -s 𝐴 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) |
23 |
|
id |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → 𝑥𝑅 = 𝑧𝑅 ) |
24 |
22 23
|
oveq12d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑦𝐿 = 𝑤 → ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑦𝐿 = 𝑤 → ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) ) |
28 |
27
|
oveq1d |
⊢ ( 𝑦𝐿 = 𝑤 → ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑦𝐿 = 𝑤 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) ) |
30 |
25 29
|
cbvrex2vw |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) |
31 |
19 30
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) ) |
32 |
31
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } = { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } |
33 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
34 |
33
|
2rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
35 |
|
oveq1 |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( 𝑥𝐿 -s 𝐴 ) = ( 𝑧𝐿 -s 𝐴 ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) |
38 |
|
id |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → 𝑥𝐿 = 𝑧𝐿 ) |
39 |
37 38
|
oveq12d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) ) ) |
41 |
|
oveq2 |
⊢ ( 𝑦𝑅 = 𝑡 → ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝑦𝑅 = 𝑡 → ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝑦𝑅 = 𝑡 → ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑦𝑅 = 𝑡 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) ) |
45 |
40 44
|
cbvrex2vw |
⊢ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) |
46 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 0s <s 𝑥 ↔ 0s <s 𝑧 ) ) |
47 |
46
|
cbvrabv |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } = { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } |
48 |
47
|
rexeqi |
⊢ ( ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) |
49 |
45 48
|
bitri |
⊢ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) |
50 |
34 49
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) ) |
51 |
50
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } = { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } |
52 |
32 51
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) |
53 |
52
|
uneq2i |
⊢ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) = ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) |
54 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
55 |
54
|
2rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
56 |
35
|
oveq1d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) |
58 |
57 38
|
oveq12d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) ) |
59 |
58
|
eqeq2d |
⊢ ( 𝑥𝐿 = 𝑧𝐿 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) ) ) |
60 |
|
oveq2 |
⊢ ( 𝑦𝐿 = 𝑤 → ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) |
61 |
60
|
oveq2d |
⊢ ( 𝑦𝐿 = 𝑤 → ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝑦𝐿 = 𝑤 → ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) |
63 |
62
|
eqeq2d |
⊢ ( 𝑦𝐿 = 𝑤 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) ) |
64 |
59 63
|
cbvrex2vw |
⊢ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) |
65 |
47
|
rexeqi |
⊢ ( ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) |
66 |
64 65
|
bitri |
⊢ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) |
67 |
55 66
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) ) |
68 |
67
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } = { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } |
69 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
70 |
69
|
2rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
71 |
20
|
oveq1d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) |
73 |
72 23
|
oveq12d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) ) |
74 |
73
|
eqeq2d |
⊢ ( 𝑥𝑅 = 𝑧𝑅 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) ) ) |
75 |
|
oveq2 |
⊢ ( 𝑦𝑅 = 𝑡 → ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) |
76 |
75
|
oveq2d |
⊢ ( 𝑦𝑅 = 𝑡 → ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝑦𝑅 = 𝑡 → ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) ) |
78 |
77
|
eqeq2d |
⊢ ( 𝑦𝑅 = 𝑡 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) ) ) |
79 |
74 78
|
cbvrex2vw |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) ) |
80 |
70 79
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) ) ) |
81 |
80
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } = { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } |
82 |
68 81
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) |
83 |
82
|
uneq2i |
⊢ ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) = ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) |
84 |
53 83
|
opeq12i |
⊢ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 |
85 |
17 84
|
eqtrdi |
⊢ ( 𝑟 = 𝑠 → 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) |
86 |
85
|
cbvcsbv |
⊢ ⦋ ( 2nd ‘ 𝑞 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 |
87 |
86
|
csbeq2i |
⊢ ⦋ ( 1st ‘ 𝑞 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = ⦋ ( 1st ‘ 𝑞 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 |
88 |
|
id |
⊢ ( 𝑙 = 𝑚 → 𝑙 = 𝑚 ) |
89 |
|
rexeq |
⊢ ( 𝑙 = 𝑚 → ( ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ↔ ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) ) |
90 |
89
|
rexbidv |
⊢ ( 𝑙 = 𝑚 → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) ) |
91 |
90
|
abbidv |
⊢ ( 𝑙 = 𝑚 → { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } = { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ) |
92 |
91
|
uneq1d |
⊢ ( 𝑙 = 𝑚 → ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) |
93 |
88 92
|
uneq12d |
⊢ ( 𝑙 = 𝑚 → ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) = ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) ) |
94 |
|
rexeq |
⊢ ( 𝑙 = 𝑚 → ( ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) ) |
95 |
94
|
rexbidv |
⊢ ( 𝑙 = 𝑚 → ( ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) ) |
96 |
95
|
abbidv |
⊢ ( 𝑙 = 𝑚 → { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } = { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ) |
97 |
96
|
uneq1d |
⊢ ( 𝑙 = 𝑚 → ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) |
98 |
97
|
uneq2d |
⊢ ( 𝑙 = 𝑚 → ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) = ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ) |
99 |
93 98
|
opeq12d |
⊢ ( 𝑙 = 𝑚 → 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 = 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) |
100 |
99
|
csbeq2dv |
⊢ ( 𝑙 = 𝑚 → ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 = ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) |
101 |
100
|
cbvcsbv |
⊢ ⦋ ( 1st ‘ 𝑞 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 = ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 |
102 |
87 101
|
eqtri |
⊢ ⦋ ( 1st ‘ 𝑞 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 |
103 |
5 102
|
eqtrdi |
⊢ ( 𝑝 = 𝑞 → ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 = ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) |
104 |
103
|
cbvmptv |
⊢ ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) = ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) |
105 |
|
rdgeq1 |
⊢ ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) = ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) → rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) = rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) ) |
106 |
104 105
|
ax-mp |
⊢ rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) = rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
107 |
1 106
|
eqtri |
⊢ 𝐹 = rec ( ( 𝑞 ∈ V ↦ ⦋ ( 1st ‘ 𝑞 ) / 𝑚 ⦌ ⦋ ( 2nd ‘ 𝑞 ) / 𝑠 ⦌ 〈 ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤 ∈ 𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡 ∈ 𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |