Metamath Proof Explorer


Theorem precsexlemcbv

Description: Lemma for surreal reciprocals. Change some bound variables. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypothesis precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
Assertion precsexlemcbv 𝐹 = rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )

Proof

Step Hyp Ref Expression
1 precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
2 fveq2 ( 𝑝 = 𝑞 → ( 1st𝑝 ) = ( 1st𝑞 ) )
3 fveq2 ( 𝑝 = 𝑞 → ( 2nd𝑝 ) = ( 2nd𝑞 ) )
4 3 csbeq1d ( 𝑝 = 𝑞 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ( 2nd𝑞 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ )
5 2 4 csbeq12dv ( 𝑝 = 𝑞 ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ( 1st𝑞 ) / 𝑙 ( 2nd𝑞 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ )
6 rexeq ( 𝑟 = 𝑠 → ( ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
7 6 rexbidv ( 𝑟 = 𝑠 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
8 7 abbidv ( 𝑟 = 𝑠 → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } )
9 8 uneq2d ( 𝑟 = 𝑠 → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) )
10 9 uneq2d ( 𝑟 = 𝑠 → ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) = ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
11 id ( 𝑟 = 𝑠𝑟 = 𝑠 )
12 rexeq ( 𝑟 = 𝑠 → ( ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
13 12 rexbidv ( 𝑟 = 𝑠 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
14 13 abbidv ( 𝑟 = 𝑠 → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } )
15 14 uneq2d ( 𝑟 = 𝑠 → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) )
16 11 15 uneq12d ( 𝑟 = 𝑠 → ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) = ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) )
17 10 16 opeq12d ( 𝑟 = 𝑠 → ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ )
18 eqeq1 ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) )
19 18 2rexbidv ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) )
20 oveq1 ( 𝑥𝑅 = 𝑧𝑅 → ( 𝑥𝑅 -s 𝐴 ) = ( 𝑧𝑅 -s 𝐴 ) )
21 20 oveq1d ( 𝑥𝑅 = 𝑧𝑅 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) )
22 21 oveq2d ( 𝑥𝑅 = 𝑧𝑅 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) )
23 id ( 𝑥𝑅 = 𝑧𝑅𝑥𝑅 = 𝑧𝑅 )
24 22 23 oveq12d ( 𝑥𝑅 = 𝑧𝑅 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) )
25 24 eqeq2d ( 𝑥𝑅 = 𝑧𝑅 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) ) )
26 oveq2 ( 𝑦𝐿 = 𝑤 → ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) )
27 26 oveq2d ( 𝑦𝐿 = 𝑤 → ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) )
28 27 oveq1d ( 𝑦𝐿 = 𝑤 → ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) )
29 28 eqeq2d ( 𝑦𝐿 = 𝑤 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) )
30 25 29 cbvrex2vw ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) )
31 19 30 bitrdi ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) )
32 31 cbvabv { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } = { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) }
33 eqeq1 ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
34 33 2rexbidv ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
35 oveq1 ( 𝑥𝐿 = 𝑧𝐿 → ( 𝑥𝐿 -s 𝐴 ) = ( 𝑧𝐿 -s 𝐴 ) )
36 35 oveq1d ( 𝑥𝐿 = 𝑧𝐿 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) )
37 36 oveq2d ( 𝑥𝐿 = 𝑧𝐿 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) )
38 id ( 𝑥𝐿 = 𝑧𝐿𝑥𝐿 = 𝑧𝐿 )
39 37 38 oveq12d ( 𝑥𝐿 = 𝑧𝐿 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) )
40 39 eqeq2d ( 𝑥𝐿 = 𝑧𝐿 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) ) )
41 oveq2 ( 𝑦𝑅 = 𝑡 → ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) )
42 41 oveq2d ( 𝑦𝑅 = 𝑡 → ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) )
43 42 oveq1d ( 𝑦𝑅 = 𝑡 → ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) )
44 43 eqeq2d ( 𝑦𝑅 = 𝑡 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) )
45 40 44 cbvrex2vw ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) )
46 breq2 ( 𝑥 = 𝑧 → ( 0s <s 𝑥 ↔ 0s <s 𝑧 ) )
47 46 cbvrabv { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } = { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 }
48 47 rexeqi ( ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) )
49 45 48 bitri ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) )
50 34 49 bitrdi ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) ) )
51 50 cbvabv { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } = { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) }
52 32 51 uneq12i ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } )
53 52 uneq2i ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) = ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) )
54 eqeq1 ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
55 54 2rexbidv ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
56 35 oveq1d ( 𝑥𝐿 = 𝑧𝐿 → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) )
57 56 oveq2d ( 𝑥𝐿 = 𝑧𝐿 → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) )
58 57 38 oveq12d ( 𝑥𝐿 = 𝑧𝐿 → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) )
59 58 eqeq2d ( 𝑥𝐿 = 𝑧𝐿 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) ) )
60 oveq2 ( 𝑦𝐿 = 𝑤 → ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) = ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) )
61 60 oveq2d ( 𝑦𝐿 = 𝑤 → ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) )
62 61 oveq1d ( 𝑦𝐿 = 𝑤 → ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) )
63 62 eqeq2d ( 𝑦𝐿 = 𝑤 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑧𝐿 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) )
64 59 63 cbvrex2vw ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) )
65 47 rexeqi ( ∃ 𝑧𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) )
66 64 65 bitri ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑏 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) )
67 55 66 bitrdi ( 𝑎 = 𝑏 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) )
68 67 cbvabv { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } = { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) }
69 eqeq1 ( 𝑎 = 𝑏 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
70 69 2rexbidv ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
71 20 oveq1d ( 𝑥𝑅 = 𝑧𝑅 → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) )
72 71 oveq2d ( 𝑥𝑅 = 𝑧𝑅 → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) )
73 72 23 oveq12d ( 𝑥𝑅 = 𝑧𝑅 → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) )
74 73 eqeq2d ( 𝑥𝑅 = 𝑧𝑅 → ( 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) ) )
75 oveq2 ( 𝑦𝑅 = 𝑡 → ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) = ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) )
76 75 oveq2d ( 𝑦𝑅 = 𝑡 → ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) )
77 76 oveq1d ( 𝑦𝑅 = 𝑡 → ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) )
78 77 eqeq2d ( 𝑦𝑅 = 𝑡 → ( 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑧𝑅 ) ↔ 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) ) )
79 74 78 cbvrex2vw ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑏 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) )
80 70 79 bitrdi ( 𝑎 = 𝑏 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) ) )
81 80 cbvabv { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } = { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) }
82 68 81 uneq12i ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } )
83 82 uneq2i ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) = ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) )
84 53 83 opeq12i ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑠 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩
85 17 84 eqtrdi ( 𝑟 = 𝑠 → ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ )
86 85 cbvcsbv ( 2nd𝑞 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩
87 86 csbeq2i ( 1st𝑞 ) / 𝑙 ( 2nd𝑞 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ( 1st𝑞 ) / 𝑙 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩
88 id ( 𝑙 = 𝑚𝑙 = 𝑚 )
89 rexeq ( 𝑙 = 𝑚 → ( ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ↔ ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) )
90 89 rexbidv ( 𝑙 = 𝑚 → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) ) )
91 90 abbidv ( 𝑙 = 𝑚 → { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } = { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } )
92 91 uneq1d ( 𝑙 = 𝑚 → ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) )
93 88 92 uneq12d ( 𝑙 = 𝑚 → ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) = ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) )
94 rexeq ( 𝑙 = 𝑚 → ( ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) )
95 94 rexbidv ( 𝑙 = 𝑚 → ( ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) ) )
96 95 abbidv ( 𝑙 = 𝑚 → { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } = { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } )
97 96 uneq1d ( 𝑙 = 𝑚 → ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) = ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) )
98 97 uneq2d ( 𝑙 = 𝑚 → ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) = ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) )
99 93 98 opeq12d ( 𝑙 = 𝑚 → ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ = ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ )
100 99 csbeq2dv ( 𝑙 = 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ = ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ )
101 100 cbvcsbv ( 1st𝑞 ) / 𝑙 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑙 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑙 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ = ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩
102 87 101 eqtri ( 1st𝑞 ) / 𝑙 ( 2nd𝑞 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩
103 5 102 eqtrdi ( 𝑝 = 𝑞 ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ = ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ )
104 103 cbvmptv ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) = ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ )
105 rdgeq1 ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) = ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) → rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) = rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) )
106 104 105 ax-mp rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ ) = rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
107 1 106 eqtri 𝐹 = rec ( ( 𝑞 ∈ V ↦ ( 1st𝑞 ) / 𝑚 ( 2nd𝑞 ) / 𝑠 ⟨ ( 𝑚 ∪ ( { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝑅 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝐿 ) } ) ) , ( 𝑠 ∪ ( { 𝑏 ∣ ∃ 𝑧𝐿 ∈ { 𝑧 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑧 } ∃ 𝑤𝑚 𝑏 = ( ( 1s +s ( ( 𝑧𝐿 -s 𝐴 ) ·s 𝑤 ) ) /su 𝑧𝐿 ) } ∪ { 𝑏 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑡𝑠 𝑏 = ( ( 1s +s ( ( 𝑧𝑅 -s 𝐴 ) ·s 𝑡 ) ) /su 𝑧𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )