Description: The predecessor class over (/) is always (/) . (Contributed by Scott Fenton, 16-Apr-2011) (Proof shortened by AV, 11-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | pred0 | ⊢ Pred ( 𝑅 , ∅ , 𝑋 ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred | ⊢ Pred ( 𝑅 , ∅ , 𝑋 ) = ( ∅ ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
2 | 0in | ⊢ ( ∅ ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ∅ | |
3 | 1 2 | eqtri | ⊢ Pred ( 𝑅 , ∅ , 𝑋 ) = ∅ |