Metamath Proof Explorer


Theorem predbrg

Description: Closed form of elpredim . (Contributed by Scott Fenton, 13-Apr-2011) (Revised by NM, 5-Apr-2016)

Ref Expression
Assertion predbrg ( ( 𝑋𝑉𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 )

Proof

Step Hyp Ref Expression
1 predeq3 ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
2 1 eleq2d ( 𝑥 = 𝑋 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) ↔ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
3 breq2 ( 𝑥 = 𝑋 → ( 𝑌 𝑅 𝑥𝑌 𝑅 𝑋 ) )
4 2 3 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) → 𝑌 𝑅 𝑥 ) ↔ ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 ) ) )
5 vex 𝑥 ∈ V
6 5 elpredim ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) → 𝑌 𝑅 𝑥 )
7 4 6 vtoclg ( 𝑋𝑉 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 ) )
8 7 imp ( ( 𝑋𝑉𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 )