Description: Closed form of elpredim . (Contributed by Scott Fenton, 13-Apr-2011) (Revised by NM, 5-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | predbrg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 | ⊢ ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
2 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) ↔ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
3 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑌 𝑅 𝑥 ↔ 𝑌 𝑅 𝑋 ) ) | |
4 | 2 3 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) → 𝑌 𝑅 𝑥 ) ↔ ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 ) ) ) |
5 | vex | ⊢ 𝑥 ∈ V | |
6 | 5 | elpredim | ⊢ ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑥 ) → 𝑌 𝑅 𝑥 ) |
7 | 4 6 | vtoclg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 ) ) |
8 | 7 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 𝑅 𝑋 ) |