Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
2 |
|
predeq3 |
⊢ ( 𝑦 = 𝑋 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
3 |
|
predeq3 |
⊢ ( 𝑦 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑦 = 𝑋 → ( Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ↔ Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
5 |
1 4
|
imbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ↔ ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) |
7 |
|
predpredss |
⊢ ( 𝐵 ⊆ 𝐴 → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
9 |
|
predeq3 |
⊢ ( 𝑥 = 𝑦 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
10 |
9
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) ) |
11 |
10
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
12 |
11
|
sseld |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ 𝐵 ) ) |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
13
|
elpredim |
⊢ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 𝑅 𝑦 ) |
15 |
12 14
|
jca2 |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) |
16 |
|
vex |
⊢ 𝑧 ∈ V |
17 |
16
|
elpred |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ↔ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ↔ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑧 𝑅 𝑦 ) ) ) ) |
20 |
15 19
|
mpbird |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ) |
21 |
20
|
ssrdv |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) |
22 |
21
|
adantll |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑦 ) ) |
23 |
8 22
|
eqssd |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
24 |
23
|
ex |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
25 |
6 24
|
vtoclg |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
26 |
25
|
pm2.43b |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑥 ) ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |