Metamath Proof Explorer


Theorem predel

Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion predel ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌𝐴 )

Proof

Step Hyp Ref Expression
1 elinel1 ( 𝑌 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) → 𝑌𝐴 )
2 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
3 1 2 eleq2s ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌𝐴 )