Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predel | ⊢ ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 | ⊢ ( 𝑌 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) → 𝑌 ∈ 𝐴 ) | |
2 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
3 | 1 2 | eleq2s | ⊢ ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 ∈ 𝐴 ) |