Step |
Hyp |
Ref |
Expression |
1 |
|
df-pred |
⊢ Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ E “ { 𝑋 } ) ) |
2 |
|
relcnv |
⊢ Rel ◡ E |
3 |
|
relimasn |
⊢ ( Rel ◡ E → ( ◡ E “ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ◡ E 𝑦 } ) |
4 |
2 3
|
ax-mp |
⊢ ( ◡ E “ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ◡ E 𝑦 } |
5 |
|
brcnvg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ V ) → ( 𝑋 ◡ E 𝑦 ↔ 𝑦 E 𝑋 ) ) |
6 |
5
|
elvd |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ◡ E 𝑦 ↔ 𝑦 E 𝑋 ) ) |
7 |
|
epelg |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑦 E 𝑋 ↔ 𝑦 ∈ 𝑋 ) ) |
8 |
6 7
|
bitrd |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑋 ) ) |
9 |
8
|
abbi1dv |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑦 ∣ 𝑋 ◡ E 𝑦 } = 𝑋 ) |
10 |
4 9
|
eqtrid |
⊢ ( 𝑋 ∈ 𝐵 → ( ◡ E “ { 𝑋 } ) = 𝑋 ) |
11 |
10
|
ineq2d |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 ∩ ( ◡ E “ { 𝑋 } ) ) = ( 𝐴 ∩ 𝑋 ) ) |
12 |
1 11
|
eqtrid |
⊢ ( 𝑋 ∈ 𝐵 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) |