| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pred | ⊢ Pred (  E  ,  𝐴 ,  𝑋 )  =  ( 𝐴  ∩  ( ◡  E   “  { 𝑋 } ) ) | 
						
							| 2 |  | relcnv | ⊢ Rel  ◡  E | 
						
							| 3 |  | relimasn | ⊢ ( Rel  ◡  E   →  ( ◡  E   “  { 𝑋 } )  =  { 𝑦  ∣  𝑋 ◡  E  𝑦 } ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( ◡  E   “  { 𝑋 } )  =  { 𝑦  ∣  𝑋 ◡  E  𝑦 } | 
						
							| 5 |  | brcnvg | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑦  ∈  V )  →  ( 𝑋 ◡  E  𝑦  ↔  𝑦  E  𝑋 ) ) | 
						
							| 6 | 5 | elvd | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝑋 ◡  E  𝑦  ↔  𝑦  E  𝑋 ) ) | 
						
							| 7 |  | epelg | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝑦  E  𝑋  ↔  𝑦  ∈  𝑋 ) ) | 
						
							| 8 | 6 7 | bitrd | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝑋 ◡  E  𝑦  ↔  𝑦  ∈  𝑋 ) ) | 
						
							| 9 | 8 | eqabcdv | ⊢ ( 𝑋  ∈  𝐵  →  { 𝑦  ∣  𝑋 ◡  E  𝑦 }  =  𝑋 ) | 
						
							| 10 | 4 9 | eqtrid | ⊢ ( 𝑋  ∈  𝐵  →  ( ◡  E   “  { 𝑋 } )  =  𝑋 ) | 
						
							| 11 | 10 | ineq2d | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝐴  ∩  ( ◡  E   “  { 𝑋 } ) )  =  ( 𝐴  ∩  𝑋 ) ) | 
						
							| 12 | 1 11 | eqtrid | ⊢ ( 𝑋  ∈  𝐵  →  Pred (  E  ,  𝐴 ,  𝑋 )  =  ( 𝐴  ∩  𝑋 ) ) |