Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predeq1 | ⊢ ( 𝑅 = 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐴 , 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 𝐴 = 𝐴 | |
2 | eqid | ⊢ 𝑋 = 𝑋 | |
3 | predeq123 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐴 , 𝑋 ) ) | |
4 | 1 2 3 | mp3an23 | ⊢ ( 𝑅 = 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐴 , 𝑋 ) ) |