Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 = 𝐵 ) |
2 |
|
cnveq |
⊢ ( 𝑅 = 𝑆 → ◡ 𝑅 = ◡ 𝑆 ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ◡ 𝑅 = ◡ 𝑆 ) |
4 |
|
sneq |
⊢ ( 𝑋 = 𝑌 → { 𝑋 } = { 𝑌 } ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → { 𝑋 } = { 𝑌 } ) |
6 |
3 5
|
imaeq12d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ( ◡ 𝑅 “ { 𝑋 } ) = ( ◡ 𝑆 “ { 𝑌 } ) ) |
7 |
1 6
|
ineq12d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑌 } ) ) ) |
8 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
9 |
|
df-pred |
⊢ Pred ( 𝑆 , 𝐵 , 𝑌 ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑌 } ) ) |
10 |
7 8 9
|
3eqtr4g |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) ) |