| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝑅  =  𝑆  ∧  𝐴  =  𝐵  ∧  𝑋  =  𝑌 )  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | cnveq | ⊢ ( 𝑅  =  𝑆  →  ◡ 𝑅  =  ◡ 𝑆 ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑅  =  𝑆  ∧  𝐴  =  𝐵  ∧  𝑋  =  𝑌 )  →  ◡ 𝑅  =  ◡ 𝑆 ) | 
						
							| 4 |  | sneq | ⊢ ( 𝑋  =  𝑌  →  { 𝑋 }  =  { 𝑌 } ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑅  =  𝑆  ∧  𝐴  =  𝐵  ∧  𝑋  =  𝑌 )  →  { 𝑋 }  =  { 𝑌 } ) | 
						
							| 6 | 3 5 | imaeq12d | ⊢ ( ( 𝑅  =  𝑆  ∧  𝐴  =  𝐵  ∧  𝑋  =  𝑌 )  →  ( ◡ 𝑅  “  { 𝑋 } )  =  ( ◡ 𝑆  “  { 𝑌 } ) ) | 
						
							| 7 | 1 6 | ineq12d | ⊢ ( ( 𝑅  =  𝑆  ∧  𝐴  =  𝐵  ∧  𝑋  =  𝑌 )  →  ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑋 } ) )  =  ( 𝐵  ∩  ( ◡ 𝑆  “  { 𝑌 } ) ) ) | 
						
							| 8 |  | df-pred | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑋 )  =  ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑋 } ) ) | 
						
							| 9 |  | df-pred | ⊢ Pred ( 𝑆 ,  𝐵 ,  𝑌 )  =  ( 𝐵  ∩  ( ◡ 𝑆  “  { 𝑌 } ) ) | 
						
							| 10 | 7 8 9 | 3eqtr4g | ⊢ ( ( 𝑅  =  𝑆  ∧  𝐴  =  𝐵  ∧  𝑋  =  𝑌 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  =  Pred ( 𝑆 ,  𝐵 ,  𝑌 ) ) |