Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predeq2 | ⊢ ( 𝐴 = 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 𝑅 = 𝑅 | |
2 | eqid | ⊢ 𝑋 = 𝑋 | |
3 | predeq123 | ⊢ ( ( 𝑅 = 𝑅 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) | |
4 | 1 2 3 | mp3an13 | ⊢ ( 𝐴 = 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |