Metamath Proof Explorer


Theorem predeq2

Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predeq2 ( 𝐴 = 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝑅 = 𝑅
2 eqid 𝑋 = 𝑋
3 predeq123 ( ( 𝑅 = 𝑅𝐴 = 𝐵𝑋 = 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) )
4 1 2 3 mp3an13 ( 𝐴 = 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) )