Metamath Proof Explorer


Theorem predeq3

Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predeq3 ( 𝑋 = 𝑌 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝑅 = 𝑅
2 eqid 𝐴 = 𝐴
3 predeq123 ( ( 𝑅 = 𝑅𝐴 = 𝐴𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) )
4 1 2 3 mp3an12 ( 𝑋 = 𝑌 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) )