Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predeq3 | ⊢ ( 𝑋 = 𝑌 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ 𝑅 = 𝑅 | |
| 2 | eqid | ⊢ 𝐴 = 𝐴 | |
| 3 | predeq123 | ⊢ ( ( 𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝑋 = 𝑌 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) ) |