Metamath Proof Explorer


Theorem predexg

Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011) Generalize to closed form. (Revised by BJ, 27-Oct-2024)

Ref Expression
Assertion predexg ( 𝐴𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )

Proof

Step Hyp Ref Expression
1 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
2 inex1g ( 𝐴𝑉 → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ∈ V )
3 1 2 eqeltrid ( 𝐴𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )