Description: The predecessor class exists when A does. (Contributed by Scott Fenton, 8-Feb-2011) Generalize to closed form. (Revised by BJ, 27-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | predexg | ⊢ ( 𝐴 ∈ 𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
2 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∈ V ) | |
3 | 1 2 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |