Step |
Hyp |
Ref |
Expression |
1 |
|
frirr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ¬ 𝑋 𝑅 𝑋 ) |
2 |
|
elpredg |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑋 𝑅 𝑋 ) ) |
3 |
2
|
anidms |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑋 𝑅 𝑋 ) ) |
4 |
3
|
notbid |
⊢ ( 𝑋 ∈ 𝐴 → ( ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ¬ 𝑋 𝑅 𝑋 ) ) |
5 |
1 4
|
syl5ibr |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑅 Fr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
6 |
5
|
expd |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑅 Fr 𝐴 → ( 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
7 |
6
|
pm2.43b |
⊢ ( 𝑅 Fr 𝐴 → ( 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
8 |
|
predel |
⊢ ( 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑋 ∈ 𝐴 ) |
9 |
8
|
con3i |
⊢ ( ¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
10 |
7 9
|
pm2.61d1 |
⊢ ( 𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |