| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frirr | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑋  ∈  𝐴 )  →  ¬  𝑋 𝑅 𝑋 ) | 
						
							| 2 |  | elpredg | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ↔  𝑋 𝑅 𝑋 ) ) | 
						
							| 3 | 2 | anidms | ⊢ ( 𝑋  ∈  𝐴  →  ( 𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ↔  𝑋 𝑅 𝑋 ) ) | 
						
							| 4 | 3 | notbid | ⊢ ( 𝑋  ∈  𝐴  →  ( ¬  𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ↔  ¬  𝑋 𝑅 𝑋 ) ) | 
						
							| 5 | 1 4 | imbitrrid | ⊢ ( 𝑋  ∈  𝐴  →  ( ( 𝑅  Fr  𝐴  ∧  𝑋  ∈  𝐴 )  →  ¬  𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 6 | 5 | expd | ⊢ ( 𝑋  ∈  𝐴  →  ( 𝑅  Fr  𝐴  →  ( 𝑋  ∈  𝐴  →  ¬  𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) | 
						
							| 7 | 6 | pm2.43b | ⊢ ( 𝑅  Fr  𝐴  →  ( 𝑋  ∈  𝐴  →  ¬  𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 8 |  | predel | ⊢ ( 𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  →  𝑋  ∈  𝐴 ) | 
						
							| 9 | 8 | con3i | ⊢ ( ¬  𝑋  ∈  𝐴  →  ¬  𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 10 | 7 9 | pm2.61d1 | ⊢ ( 𝑅  Fr  𝐴  →  ¬  𝑋  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) |