Metamath Proof Explorer


Theorem predin

Description: Intersection law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011)

Ref Expression
Assertion predin Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∩ Pred ( 𝑅 , 𝐵 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 inindir ( ( 𝐴𝐵 ) ∩ ( 𝑅 “ { 𝑋 } ) ) = ( ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ∩ ( 𝐵 ∩ ( 𝑅 “ { 𝑋 } ) ) )
2 df-pred Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑋 ) = ( ( 𝐴𝐵 ) ∩ ( 𝑅 “ { 𝑋 } ) )
3 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
4 df-pred Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( 𝑅 “ { 𝑋 } ) )
5 3 4 ineq12i ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∩ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) = ( ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ∩ ( 𝐵 ∩ ( 𝑅 “ { 𝑋 } ) ) )
6 1 2 5 3eqtr4i Pred ( 𝑅 , ( 𝐴𝐵 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∩ Pred ( 𝑅 , 𝐵 , 𝑋 ) )