Metamath Proof Explorer


Theorem prednn0

Description: The value of the predecessor class over NN0 . (Contributed by Scott Fenton, 9-May-2014)

Ref Expression
Assertion prednn0 ( 𝑁 ∈ ℕ0 → Pred ( < , ℕ0 , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) )

Proof

Step Hyp Ref Expression
1 nn0uz 0 = ( ℤ ‘ 0 )
2 predeq2 ( ℕ0 = ( ℤ ‘ 0 ) → Pred ( < , ℕ0 , 𝑁 ) = Pred ( < , ( ℤ ‘ 0 ) , 𝑁 ) )
3 1 2 ax-mp Pred ( < , ℕ0 , 𝑁 ) = Pred ( < , ( ℤ ‘ 0 ) , 𝑁 )
4 preduz ( 𝑁 ∈ ( ℤ ‘ 0 ) → Pred ( < , ( ℤ ‘ 0 ) , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) )
5 3 4 eqtrid ( 𝑁 ∈ ( ℤ ‘ 0 ) → Pred ( < , ℕ0 , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) )
6 5 1 eleq2s ( 𝑁 ∈ ℕ0 → Pred ( < , ℕ0 , 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) )