Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predprc | ⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 2 | snprc | ⊢ ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ ) | |
| 3 | 2 | biimpi | ⊢ ( ¬ 𝑋 ∈ V → { 𝑋 } = ∅ ) | 
| 4 | 3 | imaeq2d | ⊢ ( ¬ 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = ( ◡ 𝑅 “ ∅ ) ) | 
| 5 | ima0 | ⊢ ( ◡ 𝑅 “ ∅ ) = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ¬ 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = ∅ ) | 
| 7 | 6 | ineq2d | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ∅ ) ) | 
| 8 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ∅ ) | 
| 10 | 1 9 | eqtrid | ⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ ) |