Metamath Proof Explorer


Theorem predprc

Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024)

Ref Expression
Assertion predprc ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
2 snprc ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ )
3 2 biimpi ( ¬ 𝑋 ∈ V → { 𝑋 } = ∅ )
4 3 imaeq2d ( ¬ 𝑋 ∈ V → ( 𝑅 “ { 𝑋 } ) = ( 𝑅 “ ∅ ) )
5 ima0 ( 𝑅 “ ∅ ) = ∅
6 4 5 eqtrdi ( ¬ 𝑋 ∈ V → ( 𝑅 “ { 𝑋 } ) = ∅ )
7 6 ineq2d ( ¬ 𝑋 ∈ V → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ∅ ) )
8 in0 ( 𝐴 ∩ ∅ ) = ∅
9 7 8 eqtrdi ( ¬ 𝑋 ∈ V → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) = ∅ )
10 1 9 eqtrid ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ )