Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | predprc | ⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
2 | snprc | ⊢ ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ ) | |
3 | 2 | biimpi | ⊢ ( ¬ 𝑋 ∈ V → { 𝑋 } = ∅ ) |
4 | 3 | imaeq2d | ⊢ ( ¬ 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = ( ◡ 𝑅 “ ∅ ) ) |
5 | ima0 | ⊢ ( ◡ 𝑅 “ ∅ ) = ∅ | |
6 | 4 5 | eqtrdi | ⊢ ( ¬ 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = ∅ ) |
7 | 6 | ineq2d | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ∅ ) ) |
8 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
9 | 7 8 | eqtrdi | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ∅ ) |
10 | 1 9 | eqtrid | ⊢ ( ¬ 𝑋 ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) = ∅ ) |