Description: If A is a subset of B , then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predpredss | ⊢ ( 𝐴 ⊆ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) | |
2 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
3 | df-pred | ⊢ Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
4 | 1 2 3 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |