Metamath Proof Explorer


Theorem predpredss

Description: If A is a subset of B , then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predpredss ( 𝐴𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ssrin ( 𝐴𝐵 → ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐵 ∩ ( 𝑅 “ { 𝑋 } ) ) )
2 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
3 df-pred Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( 𝑅 “ { 𝑋 } ) )
4 1 2 3 3sstr4g ( 𝐴𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐵 , 𝑋 ) )