Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predrelss | ⊢ ( 𝑅 ⊆ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑆 , 𝐴 , 𝑋 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvss | ⊢ ( 𝑅 ⊆ 𝑆 → ◡ 𝑅 ⊆ ◡ 𝑆 ) | |
| 2 | imass1 | ⊢ ( ◡ 𝑅 ⊆ ◡ 𝑆 → ( ◡ 𝑅 “ { 𝑋 } ) ⊆ ( ◡ 𝑆 “ { 𝑋 } ) ) | |
| 3 | sslin | ⊢ ( ( ◡ 𝑅 “ { 𝑋 } ) ⊆ ( ◡ 𝑆 “ { 𝑋 } ) → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐴 ∩ ( ◡ 𝑆 “ { 𝑋 } ) ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ ( 𝐴 ∩ ( ◡ 𝑆 “ { 𝑋 } ) ) ) | 
| 5 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 6 | df-pred | ⊢ Pred ( 𝑆 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑆 “ { 𝑋 } ) ) | |
| 7 | 4 5 6 | 3sstr4g | ⊢ ( 𝑅 ⊆ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑆 , 𝐴 , 𝑋 ) ) |