Metamath Proof Explorer


Theorem predso

Description: Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion predso ( ( 𝑅 Or 𝐴𝑋𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 sopo ( 𝑅 Or 𝐴𝑅 Po 𝐴 )
2 predpo ( ( 𝑅 Po 𝐴𝑋𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
3 1 2 sylan ( ( 𝑅 Or 𝐴𝑋𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )