Description: Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predso | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
2 | predpo | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) | |
3 | 1 2 | sylan | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |