Metamath Proof Explorer


Theorem predss

Description: The predecessor class of A is a subset of A . (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predss Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
2 inss1 ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) ⊆ 𝐴
3 1 2 eqsstri Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴