Step |
Hyp |
Ref |
Expression |
1 |
|
indir |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∪ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
2 |
|
df-pred |
⊢ Pred ( 𝑅 , ( 𝐴 ∪ 𝐵 ) , 𝑋 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
3 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
4 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
5 |
3 4
|
uneq12i |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∪ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
6 |
1 2 5
|
3eqtr4i |
⊢ Pred ( 𝑅 , ( 𝐴 ∪ 𝐵 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |