| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indir | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( ◡ 𝑅  “  { 𝑋 } ) )  =  ( ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑋 } ) )  ∪  ( 𝐵  ∩  ( ◡ 𝑅  “  { 𝑋 } ) ) ) | 
						
							| 2 |  | df-pred | ⊢ Pred ( 𝑅 ,  ( 𝐴  ∪  𝐵 ) ,  𝑋 )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( ◡ 𝑅  “  { 𝑋 } ) ) | 
						
							| 3 |  | df-pred | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑋 )  =  ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑋 } ) ) | 
						
							| 4 |  | df-pred | ⊢ Pred ( 𝑅 ,  𝐵 ,  𝑋 )  =  ( 𝐵  ∩  ( ◡ 𝑅  “  { 𝑋 } ) ) | 
						
							| 5 | 3 4 | uneq12i | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ∪  Pred ( 𝑅 ,  𝐵 ,  𝑋 ) )  =  ( ( 𝐴  ∩  ( ◡ 𝑅  “  { 𝑋 } ) )  ∪  ( 𝐵  ∩  ( ◡ 𝑅  “  { 𝑋 } ) ) ) | 
						
							| 6 | 1 2 5 | 3eqtr4i | ⊢ Pred ( 𝑅 ,  ( 𝐴  ∪  𝐵 ) ,  𝑋 )  =  ( Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ∪  Pred ( 𝑅 ,  𝐵 ,  𝑋 ) ) |