Metamath Proof Explorer


Theorem preimageiingt

Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimageiingt.x 𝑥 𝜑
preimageiingt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
preimageiingt.c ( 𝜑𝐶 ∈ ℝ )
Assertion preimageiingt ( 𝜑 → { 𝑥𝐴𝐶𝐵 } = 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )

Proof

Step Hyp Ref Expression
1 preimageiingt.x 𝑥 𝜑
2 preimageiingt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 preimageiingt.c ( 𝜑𝐶 ∈ ℝ )
4 simpllr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥𝐴 )
5 3 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ )
6 nnrecre ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ )
7 6 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ )
8 5 7 resubcld ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ )
9 8 rexrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* )
10 9 ad4ant14 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* )
11 3 rexrd ( 𝜑𝐶 ∈ ℝ* )
12 11 ad3antrrr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ* )
13 2 ad2antrr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* )
14 nnrecrp ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ )
15 14 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ )
16 5 15 ltsubrpd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐶 )
17 16 ad4ant14 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐶 )
18 simplr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐶𝐵 )
19 10 12 13 17 18 xrltletrd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 )
20 4 19 rabidd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )
21 20 ralrimiva ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) → ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )
22 eliin ( 𝑥 ∈ V → ( 𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) )
23 22 elv ( 𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )
24 21 23 sylibr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐶𝐵 ) → 𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )
25 24 ex ( ( 𝜑𝑥𝐴 ) → ( 𝐶𝐵𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) )
26 1 25 ralrimia ( 𝜑 → ∀ 𝑥𝐴 ( 𝐶𝐵𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) )
27 nfcv 𝑥
28 nfrab1 𝑥 { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 }
29 27 28 nfiin 𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 }
30 29 rabssf ( { 𝑥𝐴𝐶𝐵 } ⊆ 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑥𝐴 ( 𝐶𝐵𝑥 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) )
31 26 30 sylibr ( 𝜑 → { 𝑥𝐴𝐶𝐵 } ⊆ 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )
32 nnn0 ℕ ≠ ∅
33 iinrab ( ℕ ≠ ∅ → 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )
34 32 33 ax-mp 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 }
35 9 ad4ant13 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* )
36 2 ad2antrr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐵 ∈ ℝ* )
37 simpr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 )
38 35 36 37 xrltled ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 )
39 38 ex ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) )
40 39 ralimdva ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) )
41 40 imp ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 )
42 nfv 𝑛 ( 𝜑𝑥𝐴 )
43 nfra1 𝑛𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵
44 42 43 nfan 𝑛 ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 )
45 3 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐶 ∈ ℝ )
46 2 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐵 ∈ ℝ* )
47 44 45 46 xrralrecnnge ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) )
48 41 47 mpbird ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐶𝐵 )
49 48 ex ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵𝐶𝐵 ) )
50 1 49 ss2rabdf ( 𝜑 → { 𝑥𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥𝐴𝐶𝐵 } )
51 34 50 eqsstrid ( 𝜑 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥𝐴𝐶𝐵 } )
52 31 51 eqssd ( 𝜑 → { 𝑥𝐴𝐶𝐵 } = 𝑛 ∈ ℕ { 𝑥𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } )