| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimageiingt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
preimageiingt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 3 |
|
preimageiingt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ 𝐴 ) |
| 5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
| 6 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 8 |
5 7
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 9 |
8
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 10 |
9
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 11 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ* ) |
| 13 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 14 |
|
nnrecrp |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 16 |
5 15
|
ltsubrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐶 ) |
| 17 |
16
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐶 ) |
| 18 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ≤ 𝐵 ) |
| 19 |
10 12 13 17 18
|
xrltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 20 |
4 19
|
rabidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 21 |
20
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 22 |
|
eliin |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 23 |
22
|
elv |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 24 |
21 23
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 25 |
24
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 26 |
1 25
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
| 28 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } |
| 29 |
27 28
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } |
| 30 |
29
|
rabssf |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ⊆ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝐵 → 𝑥 ∈ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) ) |
| 31 |
26 30
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ⊆ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 32 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
| 33 |
|
iinrab |
⊢ ( ℕ ≠ ∅ → ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |
| 34 |
32 33
|
ax-mp |
⊢ ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } |
| 35 |
9
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 36 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 37 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 38 |
35 36 37
|
xrltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 39 |
38
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 40 |
39
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 41 |
40
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 42 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
| 43 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 |
| 44 |
42 43
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 45 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐶 ∈ ℝ ) |
| 46 |
2
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 47 |
44 45 46
|
xrralrecnnge |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → ( 𝐶 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 48 |
41 47
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 ) → 𝐶 ≤ 𝐵 ) |
| 49 |
48
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 → 𝐶 ≤ 𝐵 ) ) |
| 50 |
1 49
|
ss2rabdf |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑛 ∈ ℕ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ) |
| 51 |
34 50
|
eqsstrid |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } ) |
| 52 |
31 51
|
eqssd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵 } = ∩ 𝑛 ∈ ℕ { 𝑥 ∈ 𝐴 ∣ ( 𝐶 − ( 1 / 𝑛 ) ) < 𝐵 } ) |