Metamath Proof Explorer


Theorem preimaleiinlt

Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaleiinlt.x 𝑥 𝜑
preimaleiinlt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
preimaleiinlt.c ( 𝜑𝐶 ∈ ℝ )
Assertion preimaleiinlt ( 𝜑 → { 𝑥𝐴𝐵𝐶 } = 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )

Proof

Step Hyp Ref Expression
1 preimaleiinlt.x 𝑥 𝜑
2 preimaleiinlt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 preimaleiinlt.c ( 𝜑𝐶 ∈ ℝ )
4 simpllr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝑥𝐴 )
5 2 ad2antrr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* )
6 3 ad3antrrr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ )
7 6 rexrd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ* )
8 3 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ )
9 nnrecre ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ )
10 9 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ )
11 8 10 readdcld ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 + ( 1 / 𝑛 ) ) ∈ ℝ )
12 11 ad4ant14 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 + ( 1 / 𝑛 ) ) ∈ ℝ )
13 12 rexrd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 + ( 1 / 𝑛 ) ) ∈ ℝ* )
14 simplr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝐵𝐶 )
15 nnrecrp ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ )
16 15 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ )
17 8 16 ltaddrpd ( ( 𝜑𝑛 ∈ ℕ ) → 𝐶 < ( 𝐶 + ( 1 / 𝑛 ) ) )
18 17 ad4ant14 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝐶 < ( 𝐶 + ( 1 / 𝑛 ) ) )
19 5 7 13 14 18 xrlelttrd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) )
20 4 19 rabidd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
21 20 ralrimiva ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) → ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
22 eliin ( 𝑥 ∈ V → ( 𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ) )
23 22 elv ( 𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ↔ ∀ 𝑛 ∈ ℕ 𝑥 ∈ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
24 21 23 sylibr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝐵𝐶 ) → 𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
25 24 ex ( ( 𝜑𝑥𝐴 ) → ( 𝐵𝐶𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ) )
26 1 25 ralrimia ( 𝜑 → ∀ 𝑥𝐴 ( 𝐵𝐶𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ) )
27 nfcv 𝑥
28 nfrab1 𝑥 { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) }
29 27 28 nfiin 𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) }
30 29 rabssf ( { 𝑥𝐴𝐵𝐶 } ⊆ 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ↔ ∀ 𝑥𝐴 ( 𝐵𝐶𝑥 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ) )
31 26 30 sylibr ( 𝜑 → { 𝑥𝐴𝐵𝐶 } ⊆ 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
32 nnn0 ℕ ≠ ∅
33 iinrab ( ℕ ≠ ∅ → 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } = { 𝑥𝐴 ∣ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
34 32 33 mp1i ( 𝜑 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } = { 𝑥𝐴 ∣ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )
35 2 ad2antrr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → 𝐵 ∈ ℝ* )
36 11 ad4ant13 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → ( 𝐶 + ( 1 / 𝑛 ) ) ∈ ℝ )
37 36 rexrd ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → ( 𝐶 + ( 1 / 𝑛 ) ) ∈ ℝ* )
38 simpr ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) )
39 35 37 38 xrltled ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → 𝐵 ≤ ( 𝐶 + ( 1 / 𝑛 ) ) )
40 39 ex ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) → 𝐵 ≤ ( 𝐶 + ( 1 / 𝑛 ) ) ) )
41 40 ralimdva ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) → ∀ 𝑛 ∈ ℕ 𝐵 ≤ ( 𝐶 + ( 1 / 𝑛 ) ) ) )
42 41 imp ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ 𝐵 ≤ ( 𝐶 + ( 1 / 𝑛 ) ) )
43 nfv 𝑛 ( 𝜑𝑥𝐴 )
44 nfra1 𝑛𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) )
45 43 44 nfan 𝑛 ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) )
46 2 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → 𝐵 ∈ ℝ* )
47 3 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → 𝐶 ∈ ℝ )
48 45 46 47 xrralrecnnle ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → ( 𝐵𝐶 ↔ ∀ 𝑛 ∈ ℕ 𝐵 ≤ ( 𝐶 + ( 1 / 𝑛 ) ) ) )
49 42 48 mpbird ( ( ( 𝜑𝑥𝐴 ) ∧ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) ) → 𝐵𝐶 )
50 49 ex ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) → 𝐵𝐶 ) )
51 1 50 ss2rabdf ( 𝜑 → { 𝑥𝐴 ∣ ∀ 𝑛 ∈ ℕ 𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ⊆ { 𝑥𝐴𝐵𝐶 } )
52 34 51 eqsstrd ( 𝜑 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } ⊆ { 𝑥𝐴𝐵𝐶 } )
53 31 52 eqssd ( 𝜑 → { 𝑥𝐴𝐵𝐶 } = 𝑛 ∈ ℕ { 𝑥𝐴𝐵 < ( 𝐶 + ( 1 / 𝑛 ) ) } )