Step |
Hyp |
Ref |
Expression |
1 |
|
preq12nebg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
2 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
5 |
|
preq1 |
⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝐷 } = { 𝐶 , 𝐷 } ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → { 𝐴 , 𝐷 } = { 𝐶 , 𝐷 } ) |
7 |
4 6
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐶 , 𝐷 } ) |
8 |
7
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐶 → 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
9 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐶 , 𝐵 } ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐶 , 𝐵 } ) |
11 |
|
preq2 |
⊢ ( 𝐵 = 𝐷 → { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } ) |
12 |
11
|
eleq2d |
⊢ ( 𝐵 = 𝐷 → ( 𝐵 ∈ { 𝐶 , 𝐵 } ↔ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
13 |
10 12
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = 𝐷 → 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
14 |
8 13
|
anim12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
15 |
|
prid2g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
17 |
|
preq2 |
⊢ ( 𝐴 = 𝐷 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐷 } ) |
18 |
17
|
eleq2d |
⊢ ( 𝐴 = 𝐷 → ( 𝐴 ∈ { 𝐶 , 𝐴 } ↔ 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
19 |
16 18
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐷 → 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
20 |
|
prid1g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 , 𝐷 } ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐵 , 𝐷 } ) |
22 |
|
preq1 |
⊢ ( 𝐵 = 𝐶 → { 𝐵 , 𝐷 } = { 𝐶 , 𝐷 } ) |
23 |
22
|
eleq2d |
⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ { 𝐵 , 𝐷 } ↔ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
24 |
21 23
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = 𝐶 → 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
25 |
19 24
|
anim12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
26 |
14 25
|
jaod |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
27 |
|
elprg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
29 |
|
elprg |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
31 |
28 30
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
32 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) |
33 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
35 |
|
olc |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
36 |
35
|
a1d |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
37 |
|
orc |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
38 |
37
|
a1d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
39 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) |
40 |
39 33
|
syl |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
41 |
34 36 38 40
|
ccase |
⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
42 |
41
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
43 |
42
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
44 |
31 43
|
sylbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
45 |
26 44
|
impbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
46 |
1 45
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |