| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preq12nebg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 2 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐴 , 𝐷 } ) |
| 5 |
|
preq1 |
⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝐷 } = { 𝐶 , 𝐷 } ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → { 𝐴 , 𝐷 } = { 𝐶 , 𝐷 } ) |
| 7 |
4 6
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐶 , 𝐷 } ) |
| 8 |
7
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐶 → 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 9 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐶 , 𝐵 } ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐶 , 𝐵 } ) |
| 11 |
|
preq2 |
⊢ ( 𝐵 = 𝐷 → { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝐵 = 𝐷 → ( 𝐵 ∈ { 𝐶 , 𝐵 } ↔ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 13 |
10 12
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = 𝐷 → 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 14 |
8 13
|
anim12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 15 |
|
prid2g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
| 17 |
|
preq2 |
⊢ ( 𝐴 = 𝐷 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐷 } ) |
| 18 |
17
|
eleq2d |
⊢ ( 𝐴 = 𝐷 → ( 𝐴 ∈ { 𝐶 , 𝐴 } ↔ 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 19 |
16 18
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐷 → 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 20 |
|
prid1g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 , 𝐷 } ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐵 , 𝐷 } ) |
| 22 |
|
preq1 |
⊢ ( 𝐵 = 𝐶 → { 𝐵 , 𝐷 } = { 𝐶 , 𝐷 } ) |
| 23 |
22
|
eleq2d |
⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ { 𝐵 , 𝐷 } ↔ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 24 |
21 23
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 = 𝐶 → 𝐵 ∈ { 𝐶 , 𝐷 } ) ) |
| 25 |
19 24
|
anim12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 26 |
14 25
|
jaod |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 27 |
|
elprg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| 29 |
|
elprg |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 30 |
29
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 31 |
28 30
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
| 32 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) |
| 33 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 35 |
|
olc |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 36 |
35
|
a1d |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 37 |
|
orc |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 38 |
37
|
a1d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 39 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) |
| 40 |
39 33
|
syl |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 41 |
34 36 38 40
|
ccase |
⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 42 |
41
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 43 |
42
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 44 |
31 43
|
sylbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 45 |
26 44
|
impbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |
| 46 |
1 45
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ) ) |