Description: An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prelpw | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ) | |
| 2 | prex | ⊢ { 𝐴 , 𝐵 } ∈ V | |
| 3 | 2 | elpw | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 4 | 1 3 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ) ) |