Metamath Proof Explorer


Theorem prelpw

Description: A pair of two sets belongs to the power class of a class containing those two sets and vice versa. (Contributed by AV, 8-Jan-2020)

Ref Expression
Assertion prelpw ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ) )

Proof

Step Hyp Ref Expression
1 prssg ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) )
2 prex { 𝐴 , 𝐵 } ∈ V
3 2 elpw ( { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 )
4 1 3 bitr4di ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ) )