Description: A pair of two sets belongs to the power class of a class containing those two sets and vice versa. (Contributed by AV, 8-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | prelpw | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ) | |
2 | prex | ⊢ { 𝐴 , 𝐵 } ∈ V | |
3 | 2 | elpw | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
4 | 1 3 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ∈ 𝒫 𝐶 ) ) |