Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | preq1 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
2 | 1 | uneq1d | ⊢ ( 𝐴 = 𝐵 → ( { 𝐴 } ∪ { 𝐶 } ) = ( { 𝐵 } ∪ { 𝐶 } ) ) |
3 | df-pr | ⊢ { 𝐴 , 𝐶 } = ( { 𝐴 } ∪ { 𝐶 } ) | |
4 | df-pr | ⊢ { 𝐵 , 𝐶 } = ( { 𝐵 } ∪ { 𝐶 } ) | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) |