Metamath Proof Explorer


Theorem preq1

Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998)

Ref Expression
Assertion preq1 ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } )

Proof

Step Hyp Ref Expression
1 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
2 1 uneq1d ( 𝐴 = 𝐵 → ( { 𝐴 } ∪ { 𝐶 } ) = ( { 𝐵 } ∪ { 𝐶 } ) )
3 df-pr { 𝐴 , 𝐶 } = ( { 𝐴 } ∪ { 𝐶 } )
4 df-pr { 𝐵 , 𝐶 } = ( { 𝐵 } ∪ { 𝐶 } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } )