Metamath Proof Explorer


Theorem preq12

Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Assertion preq12 ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 preq1 ( 𝐴 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐵 } )
2 preq2 ( 𝐵 = 𝐷 → { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } )
3 1 2 sylan9eq ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } )