| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝑦 } = { 𝐴 , 𝑦 } ) |
| 2 |
1
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑧 ↔ 𝐴 = 𝑧 ) ) |
| 4 |
3
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ↔ ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ) ) |
| 5 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐷 ↔ 𝐴 = 𝐷 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ↔ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) |
| 7 |
4 6
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) |
| 8 |
2 7
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ↔ ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐷 ∈ 𝑌 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ↔ ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ) ) |
| 10 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ) ) |
| 12 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝐷 ↔ 𝐵 = 𝐷 ) ) |
| 13 |
12
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ↔ ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ) ) |
| 14 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝑧 ) ) |
| 15 |
14
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) |
| 16 |
13 15
|
orbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) |
| 17 |
11 16
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ↔ ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ↔ ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) ) ) |
| 19 |
|
preq1 |
⊢ ( 𝑧 = 𝐶 → { 𝑧 , 𝐷 } = { 𝐶 , 𝐷 } ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝑧 = 𝐶 → ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 21 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐶 ) ) |
| 22 |
21
|
anbi1d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 23 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 = 𝑧 ↔ 𝐵 = 𝐶 ) ) |
| 24 |
23
|
anbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 25 |
22 24
|
orbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 26 |
20 25
|
bibi12d |
⊢ ( 𝑧 = 𝐶 → ( ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ↔ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) ↔ ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) ) |
| 28 |
|
preq2 |
⊢ ( 𝑤 = 𝐷 → { 𝑧 , 𝑤 } = { 𝑧 , 𝐷 } ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝑤 = 𝐷 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ↔ { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ) ) |
| 30 |
|
eqeq2 |
⊢ ( 𝑤 = 𝐷 → ( 𝑦 = 𝑤 ↔ 𝑦 = 𝐷 ) ) |
| 31 |
30
|
anbi2d |
⊢ ( 𝑤 = 𝐷 → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ) ) |
| 32 |
|
eqeq2 |
⊢ ( 𝑤 = 𝐷 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝐷 ) ) |
| 33 |
32
|
anbi1d |
⊢ ( 𝑤 = 𝐷 → ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) ↔ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) |
| 34 |
31 33
|
orbi12d |
⊢ ( 𝑤 = 𝐷 → ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∨ ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) ) ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) |
| 35 |
|
vex |
⊢ 𝑥 ∈ V |
| 36 |
|
vex |
⊢ 𝑦 ∈ V |
| 37 |
|
vex |
⊢ 𝑧 ∈ V |
| 38 |
|
vex |
⊢ 𝑤 ∈ V |
| 39 |
35 36 37 38
|
preq12b |
⊢ ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∨ ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) ) ) |
| 40 |
29 34 39
|
vtoclbg |
⊢ ( 𝐷 ∈ 𝑌 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) |
| 41 |
40
|
a1i |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐷 ∈ 𝑌 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ) |
| 42 |
9 18 27 41
|
vtocl3ga |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 43 |
42
|
3expa |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 44 |
43
|
impr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |